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Abstract

fhe laser programmable floating point application specific processor (LPASF) is a new ap-

proach at rapid dev\eopment of custom VLSI chips. The LPASP is s generic application specific

,r-essor that can be programmed to perform a specific function. The effort ,f this thesis is to

,bv,,lop and test the double precision floating point adder and the laser programmable read-only

rii,.iory (LPROM) that are macrocells within the LPASP. In addition, the thesis analyz,'-! the

; tiiliability of an LPASP paraflel processing system.

The double precision floating point adder is an adder/subtractor macrocell dsigned to comply

with the IEEE double precision floating point standard. An 84-pin chip of the adder was fabrica~eu

uing 2 micron feature sizes. The fastest processing time was measured at 120 nanoseconds over

2:3 worst case test recto . :e adder uses the optimized ca. :y multiplexed (OCM) adder that was

.,veloped at AFIT.

The OCM adder is a new adder architecture that uses four parallel carry paths to attain a

pe, rmance time on the order of 0( nnf) with a gate count on the order of 0(n). The redundant

L,:uic associated with the parallel propagation banks is eliminated in the OCM adder so that the

largest bit-slice of the adder contains only eight 2-to-1 multiplexer gates. A 57-bit adder was

fabricated using 2 micron eature sizes. The processing time for the adder is 31 nsec.

The laser programmable read-only memory (LPROM) is rrogrammed by using an argon-ion

laser to cut transistor links. The LPROM was designed to provide a post-fabrication programmable

capability to a MOSIS compatible ROM. A 256 by 16 't LPROM was fabricated using 2 micron

featiure sizes. The chips were laser programmed with a laser programming yield of 100% and an

,f-chip read access time of 23 nanoseconds.

xi



TECHNOLOGY DEVELOPMENT AND CIRCUIT DESIGN

FOR A PARALLEL LASER PROGRAMMABLE

FLOAIING POINT APPLICATION SPECIFIC PROCESSOR

1. Introduction

rhe laser programmable application specific processor (LPASP) is a new approach at solving

the computing problems that require very small and very fast computer processing. This chapter

aives a broad introduction to the LPASP. It begins oy presenting some background as to why

application specific processors are needed to solve today's computing problems. The chapter then

explains the exact problem that the LPASP will be solving and what has been accomplished so

far in the design of the chip. The scope of the research and the equipment requirements are also

addressed.

1 I Background

Today's computing problems for both aircraft and spacecraft require very fast computers

for aerodynamic maneuvering, trajectory calculations, and object tracking. Most of our modern

aircraft aerodynamic surfaces are controlled by computers. Without the computers on the F-16,

for example, the aircraft is unstable. The on-board computers must be very fast to respond to

aerodynamic instabilities and pilot controls. If the computers do not respond quickly to pilot

Controls, then the pilot tends to overcompensate the controls before the computer responds. An

excellent example of pilot overcompensation is when the space shuttle made its first landing on

Kennedy Space Center's runway. The computers didn't respond quickly to the pilots commands,

so the pilot turned sharper. When the computers responded to the sharp turn, the resulting turn

was too sharp and the shuttle nearly crashed.

Computers can be built that are very fast, but they usually are also very big. The size of a

super-computer is too great to possibly fit on an aircraft or a satellite. The CRAY super-computers

are so large that the outer houoing contains cushions and is designed in the shape of a circular couch.

The solution to the problem of fast computing in a small package is to design application

specific processor (ASP) chips that accomplish a specific task. The chips are very fast because they

can be optimized to perform just one task.
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L 2 Problem

Application specific processnrs satisfy the computing needs of today's modern aircraft and

spacecraft, but since they only perform one task, a number of different ASPs must be designed

to make a complete computer system. The task of designing the various ASPs to perform all of

the operations required by an aircraft can be overwhelming. It takes approximately two years to

conceive, develop, design, implement, and fabricate a custom non-silicon compiled ASP.

What is needed i a generic ASP that can be programmed to perform a specific function. The

goal of this thesis research is to develop the technology and continue the circuit design for an ASP

that can be modified by a laser to alter the ASPs configuration. By altering the configuration of

the ASP, the generic ASP can be made to perform any number of different tasks. Since the ASP

is laser programmable, it has been named the laser programmable application specific processor

(LPASP).

The LPASP is capable of accomplishing a wide variety of tasks because it contains all of the

common processing structures that are required by most computing algorithms. The LPASP in-

cludes within its architecture a double precision floating point adder/subtracter, a double precision

floating point multiplier, two 32-bit integer arithmetic logic units (ALUs), a barrel shifter, two sets

of 25 storage registers, six incrementers, and four address pointer/incrementer registers.

The programmability of the LPASP is achieved though the use of two read-only memories.

The first ROM is called the fixed ROM because the information iq fabrirated into the ROM and

c:dflfno be changed. The fixed ROM contains common routines and functions that can be performed

by the LPASP. The common routines include matrix multiplication, vector addition, and dot prod-

uct calculations. The second ROM is the laser programmable read-only memory (LPROM). The

LPROM is where the user specifies the exact task that the LPASP is to perform. The LPROM

contains user specific routines and function calls to the routines that are stored in the fixed ROM.

Since the information in the LPROM is unique for each application, the data is not fabuicated

into the ROM like the fixed ROM's data. The data will be placed into the LPROM using a laser.

The method for laser p,-ogramming is one of the issues of this thesis effort.

1 3 Summaryj of Current Knowledge

The LPASP is the culmination of past thesis work accomplished by four individuals.The

original work for the LPASP started with Captain David Gallagher's thesis effort to create a

library of bit-slice standard cells that could be used to create an ASP(9). He created all of the
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,-,ils required for an integer ASP and culminated his thesis with the fabrication of a single-precision

integer ASP.

The overall system architecture for the LPASP was designed by Captain John Comtois in

19 (4). Ie created all of the smaller structures including the ALUs, the register sets, the barrel

shifter, and the control logic. Some of the structures either used Gallagher's standard cells or

were derived from the standard cell library. He did not design the four major units, which are the

double precision floating point multiplier, the double precision floating point adder/subtracter, the

LPROM, and the fixed ROM.

The architecture for the double precision floating point multiplier was proposed by Captain

Eric Fretheim as a class project(8). The multiplier combines octal Booth encoding with a parallel

multiplier design. It re-eivcs two 64-bit numbcrs and returns thi; -nultiplication -:f the numbers a.

a 64-bit number. It is designed to operate in 80 nanoseconds. The multiplier is the largest single

structure in the LPASP.

The basic cell design for the LPROM was attempted by Captain John Tillie(19). The cell

design was similar to the fixed ROM except that the pulldown line was replaced by a diffusion

link gap. In theory, when an argon ion laser beam strikes the diffusion link gap, the two pieces of

diffusion weld together. Captain Tillie did not succeed in programming the memory cell because

the precision equipment required for the task was not available. The diffusion link technology has

been demonstrated very successfully at Lincoln Laboratories.

In 1985, Captain Paul Rossbach created a computer program that automatically designs an

optimized ROM(12). The design uses cross-coupled transistors in the shape of an X, so it was

called an XROM. The XROM program receives as input the data that needs to be stored in the

fixed ROM. It then optimizes the ROM by swapping address lines and eliminating transistors. It

outputs a mask level description of the fixed ROM design that is ready for fabrication. The data

to be stored in the fixed ROM for the LPASP is being generated as part of Captain Bill Koch's

thes'z effort.

1.4 Scope

The original goal of this thesis effort was to complete the design and fabrication of the

LPASP. Unfortunately, the diffusion link LPROM did not work, and the design of the floating

point multiplier was not yet completed. Without the LPROM and the multiplier, the integration

of the LPASP could not be performed. As a result, the goals of the thesis were modified. The

first goal was to design, fabricate, and test the floating point adder. The second goal was to

1-3



design, fabricate, and test a new LPROM. The third goal was to analyze the feasibility for parallel

applications of the LPASP.

1.5 Mfaterials and Equipment

Once the LPROM chip is fabricated, it must be laser programmed at a laser programming

workstation. The laser programming workstation consists of a laser with all of its peripheral

cooling equipment, an optics box to guide the laser beam, an X-Y translation table to position

the chip, and an isolation table to dampen vibrations from the floor. The positioning of the chip

can be accomplished through pattern recognition of the program site in the LPROM. The pattern

recognition equipment includes a Sun workstation to execute the software, a camera to capture the

image, and a monitor to view the image.

The precision equipment required for laser programming costs approximately $250,000 and

should be housed in a climate controlled room. Rather than purchase the equipment, it was found

to be more cost effective to use the proven equipment at Lincoln Laboratories. The researchers at

Lincoln Labs agreed to assist with the laser programming effort and were extremely helpful and

generous.

1.6 Conclusion

The LPASP is a generic version of an application specific processor. It contains all of the

capabilities and speed of a regular ASP, but it only requires about a days worth of laser programming

time, compared to the two years needed to go from conception to fabrication for a custom ASP.

The chip accomplishes the design speedup by containing all of the common processing structures

and most of the common routines on a single chip that can be programmed with a laser to perform

a specific task.

The complete system requires the design of the double precision floating point adder/-

subtracter, the design of the LPROM, the creation of the fixed ROM, and the integration and

test,,g of the complete system. The complete LPASP is the largest and most powerful chip ever

designed at the Air Force Institute of Technology.
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II. Background

2.1 Introductomn

The idea for the LPASP was crea,: ihtuoyh the ,uik Af Capt Ricnard Linderman, Capt

David Gallagher, and Capt John Comtois. Capt Linderman reated the initial architecture for a

single precision integer ASP and integrated the idea of combining an ASP with a laser programmable

ROM. Capt Gallagher created a library of sub-circuits for a bit-slice application specific processor

as part of his thesis effort at AFIT(9). The library of sub-circuits was modified by Capt Comtois

for use in the LPASP. Capt Comtois also took the single precision ASP architecture and built from

it the LPASP double precision architecture.

Capt Comtois created an ASP with four major components(4). The largest component was

the double precision floating point mult;rlier. The multiplier was accompanied by a double precision

floating point adder/subtracter, a microcode store, and the integer datapaths with control logic.

This chapter will take a brief look at the history behind each major component.

2.2 Multiplier

The architecture and the initial layout of the mantissa for the double precision floating point

multiplier was developed by Captain Erik Fretheim(8). A subset of the initial cells for the mantissa

were tested as part of an EE695 class project. The mantissa cells were tested with ESIM and some

errors were found in the logic for the octal Booth encoding. The erroneous cells were corrected

by the testing team, and a small mantissa was created with the new cells, but a test chip was

not fabricated. The completion of the multiplier is the highest risk item for the completion of the

LPASP.

2.3 Adder

The double precision floating point adder design evolved from an architecture that Major Joe

DeGroat created and simulated using the VHSIC Hardware Description Language (VHDL). The

initial layout for the adder became a class project for Captain Charles Wardin and myself(16). The

adder was completed as part of this thesis project and is discussed in detail in Chapter 4.

24 Microcode Store

The LPASP contains two ROMs that are used to store the microcode which contain the control

signals for the tasks to be executed by the LPASP. The first ROM is a fixed ROM, which is created
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by the AFIt' XROM compiler. The fixed ROM holds the common LPASP routines to perform dot

product. natrix multiplication, etc. Each fabricated LPASP contains the same microcode in the

fixed ROM section. The second ROM is the laser programmable ROM (LPROM). An LPROM

architecture and design was initiated by Captain John Tillie using a diffusion link technique(19).

The diffusion link technique was created by Lincoln Laboratories where it has been employed very

successfully(14). Unfortunately, Capt Tillie could not get his LPROM test chip to work. The

re-evaluation of laser techniques and the architecture and design of a new LPROM is part of this

thesis effort.

.2.5 Datapaths with Control Logic

After the architecture for the LPASP was completed, Capt Comtois began designing macro-

cells for the LPASP. He completely designed the integer datapaths that contains two 32-bit integer

arithmetic logic units (ALUs), a barrel shifter, two sets of 25 storage registers, six incrementers,

and four address pointer/inctementer registers. The chip is laid out such that there is an upper

datapath and a lower datapath. He also created the control logic macrocells to control the instruc-

tion addressing, branching, and the stack. The architecture and the cells created by Capt Comtois

will be discussed in detail in Chapter 3.
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H. .4Architecture of LPEISP

3. 1 Introduction

The architecture for the LPASP was created by Capt John Comtois as part of his thesis

effort(4). He started with an architectural specification and a proposed microcode instruction set.

He also received input from the Summer term EE588 class, which was tasked to write the microcode

for a Kalman filter algorithm. The information for this chapter comes exclusively from Chapter 3

of Capt Comtois' thesis.

3.2 Data Repre'.entation

The doubl precision floating point data representation requires 64 bit data words, but the

only macrocells that have to use the double precision format are the floating point multiplier and

the floating point adder/subtracter. The integer datapath and address control units could have

been designed to use 64 bit data words, but a 64 bit ALU would require more time to execute

than a 32 hAt ALU and the memory address requires only 20 bits. The extra bits would only slow

down the LPASP. The solution was to use 32-bit data words for integer operations and 64-bits data

words for floating point operations. The data format for double precision is shown in Figure 3.1.

3.3 General Architectural Features

To support the floating point units, two 32-bit datapaths were created that could combine

to drive the floating point units or work in parallel on integer data. The I/O data width was set

to 64-bits with the external memory split into upper and lower 32-bit halves. Each memory half

is independently addressable; such that, the upper datapath can access memory at the same time

that the lower datapath is accessing memory at a different address. The upper and lower datapaths

are mirror images of each other with the exception of the barrel shifter in the lower datapath and

the function ROM in the upper datapath (see Figure 3.2). The function ROM is only used by the

floating point units and is therefore required on only one of the datapaths. The barrel shifter was

placed only on the lower datapath because of its size. The upper datapath can access the barrel

shifter by using the bus ties.

.3 4 Bus Architecture

Ea.ch of the LPASP's datapaths contain five data busses (see Figure 3.2). The A and B

busses are primarily used to provide input data to the processing hardware. The A bus can be
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Figure 3.1. Double Precision Representation Inside the LPASP.

driven by any register except the Memory Address Register (MAR). The B bus can be driven by

the general purpose registers, the incrementable data registers, or the floating point units. The C

bus is primarily used to return the results of the processing units. The C bus can drive any of

the registers. The D bus is a bidirectional bus which can be driven by the MBR for a data write

to memory or driven by the data pads for a memory read to the MBR, general purpose register 1

(RI), or general purpose register 2 (R2). The E bus is an address bus that can be driven by the

least significant twenty bits of either of the pointer registers and can drive the MAR. The E bus

allows the A, B, and C busses to be used by the processing units while the pointer registers use the

E bus to manipulate the MAR.

The busses of each datapath can operate within there associated datapath or can be indepen-

dently tied to their counterpart bus. This allows data from the upper datapath to be transferred to

the lower datapath or vice versa. It also allows data from one register to drive both datapaths at

the same time. The number of operations may be limited to one when the busses are tied together.

This ability is especially useful for reading and writing floating point data because the E bus can be

tied together to drive both MARs with the same address. The MAR can then direct the memory

to store or read the upper and the lower portions of the floating point data from the same memory

location.
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1.5 Register Types

Five bits were set aside in the microcode for register selection. The five bits of microcode

allow for 31 registers and a NOP selection. Of the 31 registers, there are five different kinds of

registers in the LPASP.

3.5. 1 Jncrementable Registers. The first register type is an incrementable register. The

incrementable register allows the contents of the register to be unchanged or incremented by one

each clock cycle. There are three incrementable registers in each datapath, which were included to

allow looping without burdening the ALU. Each register includes a zero flag for testing conditional

branches. Between the two datapaths, loops can be nested six deep without impacting the ALU.

3.5.2 Pointer Registers. The second type of register is the pointer register. There are two

pointer registers and an adder in each datapath. Each pointer register has an associated register

that hold an increment value. During a clock cycle, one of the pointer registers can be incremented

by the value stored in its increment value register. The pointer registers were included in the

architecture to allow for data retrieval of columns of data in a matrix. The next element in a row is

located at the next address, but the next element in a column depends on the number of elements

in the row.

.1.5.3 Memory Registers. Each datapath contains two registers used to manipulate memory.

The first register is the 20-bit Memory Address Register (MAR). The MAR is used to point to

the location in memory that is to be read or written. The MAR can be loaded by the E bus, the

20 least significant bits of the C bus, or the value of the MAR incremented by one. The second

register is the Memory Buffer Register (MBR) which is used to hold the value that is to be stored

in memory. It can also store the value that is read from memory, but R1 and R2 have also been

given this capability so that a value from memory can be read into RI or R2 through the D bus at

the same time that a resultant value is loaded in the MBR from the C bus. In the next clock cycle

the resultant value can be stored in memory.

3.5.4 General Purpose Registers. The remaining 25 registers were made into general purpose

registers: R1 through R25. The general purpose registers are 32-bits wide and can drive either the

A bus or the B bus. They are loaded by the C bus, with the exception of R1 and R2 which can be

loaded by the C bus or the D bus.
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3.6 Processing Cornponents

The idea of the LPASP is to pr r ".",,ing capabilities for a wide variety of algorithms.

The best way to provide a variety of pr . -. apabilities is to include a wide variety of processing

components. The LPASP contains r::tfpr,,nt processing components. Integer processing is

handled by the integer ALU, the bihir,ctional linear shifter, the barrel shifter, and the literal

inserter. Floating point processing is achwk"ed by the floating point multiplier, the floating point

adder/subtracter, and the function ROM

3.6.1 Integer Arithmetic and Logic Unit. Each of the datapaths in the LPASP contains an

32-bit integer arithmetic and logic unit (ALU). The ALU can perform almost all of the common

arithmetic and logic functions, expect for multiplication, which is handled as an option of the

floating point multiplier. The functions performed by the ALU are listed in Table 3.1. The

"add with carry" (ADC) and "subtract with borrow" (SWB) functions were included to allow

arithmetic operations on more than 32 bits. The ALU is driven by the A and B busses and drives

the bidirectional linear shifter. Each of the ALUs has a set of independent flags that include a

carry/borrow flag, an overflow flag, a zero flag, and a sign flag (see Figure 3.3). The flags can be

used for branching in the clock cycle following the cycle where they are set.

Function Value Passed to Shifter Flags affected
CARRY, OVERFLOW, SIGN, ZERO

MOVN A none
OR A OR B zero

AND A AND B zero
XOR A XOR B zero
MOV A zero

NAND A NAND B zero
NOR A NOR B zero
NOT NOT A zero
INC A +0 + 1 All Four
SET A + B + 1 All Four, Sets CARRY
ADC A + B + previous carry All Four
ADD A + B - 0 All Four

NEGA " + 0 + 1 All Four
SUB A + B + I All Four
SWB A + B + previous borrow All Four
DEC A + I + 0 All Four

Table 3.1. ALU Operations.
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3.6. ? Bidirectional Linear Shifter. The bidirectional linear shifter can perform a one bit

shift in either direction or pass the data without modifying it. Whenever a shift is performed, the

bit shifted out is stored for the next ALU operation. The shifter can perform arithmetic shifts,

logical shifts, circular shifts, and shifts using the stored bit from the previous ALU operation (see

Table 3.2). The shifter is driven by the output of the ALU and drives the C bus (see Figure 3.3.

The shifter can also ground the C bus, which is useful for clearing registers without using the A or

D busses.

F'unction Type of Shift Bit Shifted In

NOP Shifter does not drive C bus none
GNDC Shifter grounds C bus none
PASS No shift, ALU output goes on C bus none
SLOT Chained Left shift previous shift-out bit into LSB
S LMS Circular Left shift MSB circulated into LSB
SLCY Shift Left with Carry Carry of present ALU operation
SL0 Shift Left with Zero C, into LSB
SL1 Shift Left with One 1 into LSB

SRLS Circular Right shift LSB circulated into MSB
SRCF Shift Right with previous Carry Carry flag into MSB
SRS Shift Right with previous Sign Sign flag into MSB

SROT Chained Right Shift previous shift-out bit into MSB
SRSE Arithmetic Right shift MSB extended
SRCY Shift Right with Carry Carry of present ALU operation

I SRO Shift Right with Zero 0 into MSB
SRI Shift Right with One I into MSB

Table 3.2 Shifter Functions.

7 6.3 Barrel Shifter. The barrel shifter is a left circular shifter capable of shifting from 1

to 31 bits in one clock cycle. Because of its size, the barrel hifter is only located on the lower

datapath. It receives it input from the A bus and outputs to the C bus. The upper datapath can

drive the barrel shifter if the busses are tied, but the barrel shifter cannot pass data unshifted. The

barrel shifter is controlled by the shift length register, which can be loaded from the microword

control bits or the lower five bits of the C bus. The shifter can be tricked into acting like a linear

shifter by using the literal inserter to zero out the most significant bits that are shifted around

This requires that the number of shifted bits be known in advance.

) 6.4 Literal Inserter. The literal inserter takes 16 bits from the microcode word and places

thom on the LSBs or the MSBs of either A bus. The literal inserter allows constants in an algorithm

without using memory or general purpose registers. Thirty-two bits of data can be inserted by
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placing the most sigpificant 16 bits in the LSB of the A bus and the- sending them through the

barrel shifter to shift them to the MSBs. The least significant 16 bits can be placed with the literal

inserter during the next clock cycle.

'?.6.5 Fun, !ion ROM. The function ROM is used to store seeds for iterative subroutines.

'Fhe seeds help routines such as square root or inverse to converge quickly. The ROM can store tables

of seeds for eight different routines. Tie table selection is accompiished with control bits, while lie

table index uses the data on the B bus. The function ROM is located on t1.e upper datapath so

that the output drives the exponent and the MSBs of the mantissa of the floating point number.

The function ROM is divided into a pre-progrAmnied section and a laser programmable section so

tat user specific seeds can be stored in the RQM. "Ihe output of the ROM goes to the C bus.

7 ".6 Floating Point Multiplier. The floating point multiplier is used to multiply 64-bit

floating point numbers or 32-bit integer numbers. It is the largest macrocell in the LPASP and

requires two clock cycles to settle. The mu!tiplier receives its inputs from the A and B busses and

can output to either the C bus or the B bus. For floating point operations, the most significant 32

bits come from the upper datapath, and the least significant 32 bits come from the lower datapath.

[he multiplier supports the IEEE double precision floating point format, including the flagging of

the conditions of underflow, zero result, denormalized result, overflow, and a not-a-number result.

An additional flag, calle the TRPS flag, is the OR of those flags that indicate an invalid result.

The B bus output was created to allow the output from the multiplier to immediately drive the

input to the floating point adder. The B bus connections allows the user to alternate driving the

multiplier and the adder so that a floating point operation can be initiated every clock cycle.

7. 6. 7 Floating Point Adder/Subtracier. The floating point adder/subtracter is used to add

or subtract two 64-bit floating point numbers. It receives inputs from the A and the B busses and

outputs to either the C bus or the B bus. It supports the IEEE double precision floating point

format, and can drive the floating point multiplier directly through the B bus. The interface to

the adder/subtracter is the same as the floating point multipliers. The adder will be discussed in

greater detail in Chapter 4.

7 Microsequencer

The micro-,equencer controls the addressing of the ROMs that hold the microcode instructions.

At the center ot he microsequencer is the Control Address Register (CAR) that contains the address

for the microcode ROMs (see Figure 3.4). The CAR is a 10-bit register i iat is loaded every clock
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,CVle from a 4-to-1 multiplexer. The multiplexer chooses between the incremented value of the

CAR's present contents, an -ddress from the microcode word presently on the control bus, the

address on the top of the stack, or an address from the mapping ROM. The CAR is zeroed by the

GO signal to initialize the CAR to the beginning of the microcode routine. With ten bits in the

CAR. the ROMs can contain 1024 words, though they only use 784.

Control signals to sequencer
Control Signals

to Datapath

Pipeline registers [

Mi1crocode ROMs
to

Ad(ress Cond.
pads select

-Stack + 1
Pointer F

TAG [ CAR X [-11x 0 .] A
LLS

pus pop select

M P microROM address
other signals

Figure 3.4. Microsequencer Block Diagram.

The four selections were chosen to support sequential flow, branching and subroutine calls,

subroutine returns, and assembly language support, respectively. The default selection is the in-

cremented value for sequential flow. The incremented value is also selected when the branch logic

is false. The branching logic is handled by a 48-to-I multiplexer, but flags to one section of the

mux can be inverted, which gives a total of 64 branch conditions. The conditions include "uncondi-
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tionallv true" and "unconditionally false" (see appendix A.1 of Comtois). A subroutine call pushes

the incremented value onto the stack and then performs the branch. A subroutine return pops the

return address from the stack. The final selection uses the bits from the lower RI register as an

address into the mapping ROM to select and address used by the assembler.

After the address is placed in the CAR, the microcode instruction selected by the address in

placed into the instruction pipeline. The pipeline provides an orderly presentation of the control

bits to the datapath, but it also creates a one clock cycle delay between the time the address is

chosen and the time its microcode control word is executed. This inherent delay means that one

instruction is always executed following a branch instruction before the branch can occur.

9. 7.1 Microaddress Stack Architecture. The stack used to store the return addresses for

subroutine calls has a limited size. If the number of nested subroutine calls exceeds the size of the

stack, then the lowest address on the stack is sent to the lower data pads and an address from the

external stack pointer is sent to the lower address pads. The stack architecture allows for the stack

to overflow into external memory (see Figure 3.5). When the stack is popped, the address from the

external stack is placed back onto the internal stack. The external stack pushes and pops do not

effect the MAR or the MBR of the lower datapath or any of the lower datapath operations except

that memory reads and writp un the lower datapath can not be performed at the same time as a

subroutine call or su'iroutine return. Two counters are used to keep track of the address and status

of the external stack.

3.7.2 Microcode Storage. The microcode words are stored in two different types of ROMs to

support library routines and user specified routines. The fixed ROM is a silicon compiled optimized

ROM that was created at AFIT by Capt Rossbach [Ros85I. The fixed ROM stores common library

routines to support dot product, matrix multiplication, etc. It is presently designed to hold 640

words of microcode. The second ROM is a laser programmable ROM (LPROM). The LPROM is

where the user stores personalized routines to perform a specific task. The LPROM routines can

call the library routines that are stored in the fixed ROM or call routines that are placed in the

LPROM. The LPROM was initially design by Capt Tillie as part of his thesis effort [Tilg8 and

was sized at 144 words. A new LPROM was designed as part of this thesis effort that is twice as

dense as Capt Tillie's design, so the size will double to 288 words. The microcode word length is

128 bits, which would result in very slow access times for the ROMs, so the ROMs are divided into

upper and lower 64-bit halves. The upper half contains control bits for the upper datapath. while

the lower half contains control bits for the lower datapath.
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Figure 3.5. Stack Architecture.
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J. Z. Yzcroinstruction Pipeline. The pipeline register was included in the architectuje ,,f

the LPASP for two reasons. First, it allows more time for decoding the control bits and letting the

precharged output of the ROMs to settle. Second, it was designed to allow external testing of the

contents of the pipeline. The register is designed to perform as a normal parallel-in/parallel-out

register under normal operations. but it can also act as a parallel-in/serial-out register that our pts

to a pad and inputs from a pad serially. The register is on a different clock from the rest of tbh Aljn

so that testing can be performed without affecting the rest of the chip. Also the input and outlit

pads are different so that the serial output can be wired to the serial input, and the contents of r lie

register can be tested without being destroyed.

3.8 .4ssembly Language Support

After some code was written for the LPASP, it was discovered that 144 words may not be

enough to store all of the users routines. The solution was to support an assembly language. The

assembly language works by using hr,h of the R1 registers as an instruction register (IR) and the

A pointer register as the program counter (PC), with its increment register loaded with a '1'.

The instruction in the IR speci'ies the source and destination registers, the bus tie configura-

tion kexcept for the E bus), and the operation code (opcode). "There are six instruction formats.

Each format has fields for the replacement control bits needed by the hardware used to execute

that instruction"(4).

The PC allows three different addressing modes. The default mode is the incremented value

of the PC. The 'indirect' mode uses the an address stored in one of the pointer registers as an

address pointer into memory for the address of the final address to be used. The 'immediate' mode

uses the 20 LSBs of the upper RI as an address. One of these addresses is placed into the MAR to

obtain the next instruction.

The addresses for the assembler operations are stored in the MAP ROM. The MAP RON! is

an LPROM that is addressed by the five opcode bits in the lower R1. It can contain 32 operation

addresses, but eleven operations have been predefined. The first operation is the TRAP routine.

The ten odfer predefined operations are defined in Table 3.3. The remaining 21 operations can be

programmable by the user.
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Instruction LPASP Operations

!, ad, r Io -c- tcr frcm exterral mevnnry

Store store one or two register's contents to external memory

Branch branch to an external memory location on any branch
condition, using direct or indirect addressing

Call call an external subroutine, using direct or
indirect addressing

Return return from an external subroutine

ALU perform any ALU operation with one or both ALUs
with any source or destination registers

Bshift perform a barrel shift with any source or
destination registers

Ptr/lnc increment a pointer or incrementable register,
or load a pointer's increment register

FP+ perform a floating point addition, with any source or
destination registers

FP* perform a floating point multiplication, with any
source or destination registers

Table 3.3. Assembly Language Macro Instructions.
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3.9 Remainng Components

The main emphasis of this thesis is to complete some of the remaining components of the

LPASP. There are four major components that have either not been created or their design was

incomplete. Of the four remaining components, this thesis has concentrated on the double precision

floating point adder and the laser programmable ROM. Test chips for these two components have

been designed, fabricated, and tested. The details of the adder and the LPROM is presented in

Chapter 4 and Chapter 5, respectively.

The other two remaining components, the double precision floating point multiplier and

tie f RGM, were "ft i a. iacomplete '.tath. Te mutiplier wa Luvpoo.I ,c .. 1 .....

by another student in time for the macrocells of the LPASP to be integrated. Unfortunately, the

multiplier was not completed in time for this thesis effort. The multiplier, along with the integration

of the LPASP, will be the endeavor of a future master's student.

The fixed ROM is the easiest macrocell to create because it is produced by a silicon compiler

program. The program receives the data that is permanently stored in the fixed ROM and generates

the desired MAGIC files ready to be integrated. The fixed ROM is the last element needed prior

to integration because the fixed ROM requires all of the chip resident microcode as input data.

The resident microcode can, and probably will, change between now and the time that the chip is

fabricated. The creation of the fixed ROM, at this time, would be premature.
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IV. Floating Point Adder

4.1 Introduction

The double precision floating point adder is one of the macrocells to be incorporated into

the LPASP. The adder receives two b4-bit floating point numbers from the A and B busses of the

LPASP and returns a 64-bit floating point number to the C bus. The adder is designed to process

the 64-bit numbers in two clock cycles. It has been initially fabricated as a single chip using 2

micron technology, but will ultimately be fabricated using 1.2 micron technology. This chapter

will discuss the details of the floating point adder by presenting a short background of the adder,

a detailed discussion of the optimized carry multiplexed (OCM) adder, and a presentation of the

components of the floating point adder.

42 Background

The double precision floating point adder design evolved from an architecture that Major Joe

DeGroat created and simulated using the VHSIC Hardware Description Language (VHDL). The

initial layout for the adder became a class project for Captain Charles Wardin and myself(16). The

final architecture is a slight modification of DeGroat's original design that includes logic to detect

an overshift violation (see Figure 4.1).

4.3 Optimized Carry-Multiplexed Adder

The design of the floating point adder was started by concentrating on the design of the carry

select adder because the carry select adder is the largest consumer of the propagation delay through

the adder. The result of the analysis of the carry select adder was the invention of the optimized

carry-multiplexed adder. The optimized carry-multiplexed (OCM) adder is a new architectural

design for large adders. The adder was developed at the Air Force Institute of Technology, and a

patent application has been filed. This section starts by presenting the background of the OCM

adder, a description of the adder, and a discussion of its performance. The remainder of this section

will address the OCM adder cells that were constructed and the OCM test chip that was designed,

fabricated, and tested.

4.3.1 Background. The optimized carry multiplexed adder is the product of a three step

evolution from the carry-select adder. The first step hierarchically expanded the idea of the carry-

select adder into a binary tree structure. The second step broke out the redundant XOR-XNOR

and carry chain circuitry that was in each of the full adder cells. The third step broke out the

4-1



I- Ih iA 1e13r ' I. A manlUes ag*Ialf

4 Ojp it ei -f .Auns 2 omii

Expam Pro"Mul Manm Pmsurng
WogC LogiC

q I I' I5 fm Bmn

7 (EA~~O &4*An Anna me ao
Laile 13 33 A3

InP-( rnij 53 3

SO&a Er.-E-'14,,Et- .Ea.NI

E, =wbn EzpA ExpS Bo Nan
Era =1wnExpAraEpB
EAO = I wbga ExPA all 0
EA I =I wtn ErpA a11 1', EMl - EBI *Ovwskaf L: +.- L

Sip Co A3, ESO = Iwhen EpB all D'
-t oiapW waCh I E~t = I .im EpE ail I' 5

Uvwah= I wIro ErpA-Exp&lr43
%4>, aL I lanA > an Shift Diat
A40 = I we %4&nA aQ Os 63
% BO =I whea %ans al O's

Adds. U~~~a (SipA,3 S~pB I..1.. .

OCRI Adds.C~

LugAdde Eapai

12

mli (121h MI 

5

Expomas awput (62 do 52) hoisuv45do0

Figure 4.1. Floating Point Adder Architecture
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redundant SUM circuitry that was in each of the carry chain cells and fully utilized the parallelism

of the binary tree structure.

In July 1988, CPT Erik Fretheim, USA, proposed a carry-select-type adder where the each

ripple adder of the carry-select is expanded into a carry-select adder. The idea created a binary tree

structure where each level of the tree represents ripple adder chains in parallel. The first level is a

ripple adder (see Figure 4.2). The second level is a carry-select adder that consists of two parallel

ripple adders, one with an assumed carry input of zero and the other with an assumed carry input

of one, and a bank of multiplexers to select the correct suiti output (see Figure 4.3). The third

;eve) conz"ts .f four parallel ripple adders paired into two units, one unit with an assumed carry

input of zero and the other unit with an assumed carry input of one (see Figure 4.4). Within each

unit is a bank of multiplexers to select the correct sum output for that unit. There is also a bank

of multiplexers between the two units to select the correct sum output for that level. The carry

out from the level one ripple adder is used as the control for the level two multiplexer bank. The

carry out from the upper level two ripple adder is used as the control for the multiplexer bank

within the upper level three unit. The carry out from the lower level two ripple adder is used as

the control for the multiplexer bank within the lower level three unit. The carry out from the

level two multiplexer bank is used as the control for the multiplexer bank between the level three

units. The structure is easier to understand if it is realized that the top two levels combine to

form a traditional carry-select adder, while the third level is just two carry-select adders in parallel

without the initial ripple adders. CPT Fretheim used the idea to create a 56-bit binary tree adder

using 4 input ripple adder banks for each of the levels (see Figure 4.5). Each of the thick lines in

Figure 4.5 represents a ripple adder bank that consists of four adder cells. The bubbles represent

the multiplexers for the carry out. The advantage of the binary tree adder is that the level three

structures process twelve pair of inputs in the same amount of time that a carry-select adder would

process five pair of inputs. The entire 56 bits can be processed in ten gate delays. The disadvantage

of the binary tree adder is that it requires twice the amount of logic as a carry-select adder.

The second step of the evolution to the optimized carry multiplexed adder came from Maj Joe

DeGroat, USAF, in November 1988(6). He recognized that each of the adder cells that were being

processed in parallel in the binary tree adder contained XOR-XNOR logic with the same inputs. He

also realized that the carry chains in the upper level three unit contained the same logic and inputs

as the carry chains in the lower level three unit. The only difference between the two units is the

input control to the multiplexer banks between the two carry chains. He broke out the XOR-XNOR

logic and eliminated the redundant carry chains. The new structure requires only one XOR-XNOR

unit and two carry chain units per bit slice whereas the old structure required four XOR-XNOR
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Figure 4.5. 56-bit Binary Tree Adder
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units and four carry chain units per bit slice for level three adder cells (see Figure 4.6). The new

structure also saved one XOR-XNOR unit per bit slice from level two adder cells. The number of

multiplexers per bit slice does not change. With the reduction in logic, the only difference between

a level two bit slice and a level three bit slice is the addition of two multiplexers. This modification

significantly reduced the amount of required logic without increasing the propagation time.

A B

_.t Carry - Sum Cn

cout0 Unit Ci

['MUX Mux Ctrl 0

Sum -- UX Mux Ctri

SumIL

Cul Cry-Sum C___
Coutl [Unit ] Cn

Figure 4.6. DeGroat's Third Level Bit-slice

The final step of the evolution to the optimized carry multiplexed (OCM) adder was an idea

of mine in February 1989. I took Maj DeGroat's idea one step further by attempting to break out

the sum logic that was contained in each of the carry chains. The problem with breaking out the

sum logic is that the two sum logic units did not have the same inputs and the different sum outputs

were required as inputs to the multiplexers so that the correct sum could be chosen. The solution

to the problem is to use the multiplexers to choose the correct carry output instead of choosing

the correct sum output. Then the correct carry output is sent to a single sum unit to determine

the sum output (see Figure 4.7). The resulting carry chain unit reduces to just a multiplexer to

determine the appropriate carry out (see Figure 4.8). The resulting sum unit is also a multiplexer,

but with different inputs (see Figure 4.9). The advantage of this idea is that it requires only one
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surn unit instead of two sum units. The disadvantage is that the final output is delayed by one

T-gate delay. Ihis delay can be avoided by using DeGroat's version for the final stage of the adder.

A B
Output1 to Carry

R and Sm, units

C arry
UntCinO

Iout0 Mux Ctrl 0Cout0t

Cou --- U-UK Mux CtrlI

Coutl c7out 1 " @--- MxCr

Carry 
Cn

Unit ]ci

Sum
Sum Unit Cin

Figure 4.7. Scriber's Third Level Bit-slice

I also investigated the growth properties of the OCM stage. In a traditional carry-select

adder, the second level structure is repeated with each successive stage adding another adder cell

to the stage to compensate for the multiplexer delay. For the OCM adder, a stage consists of a

second level sub-stage followed by multiple third level sub-stages (see Figure 4.10). The entire stage

structure is repeated with each succession adding another level three sub-stage to compensate for

the multiplexer delay. The OCM adder significantly decreases the carry propagation time for large

adders because smaller sub-stages of level three banks can settle in parallel with the largest sub-

stage without adding to the carry propagation delay for the stage. For example, if th, largrst level

three sub-stage within a stage is five bits long then a four hit level three sub-stage could feed it,

preceded by a three bit sub-stage, a two bit sub-stage, and finally a one bit second level sub-stage
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Gin B

Cout

Figure 4.8. Carry Unit

Gin Cin

0 1
A xor B sei o

MUX
A xnor B 5.1 1

-out

Figure 4.9. Sum Unit
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(see Figure 4.11). This fifteen bit stage requires the same amount of propagation time as a six bit

stage in a traditional carry-select adder. The stage growth for a OCM adder is quadratic (" 2 .+n);

whereas, the stage growth for a traditional carry-select adder is linear. Yet, an OCM stage and a

carry-select stage settle in the same amount of time.

Third Third Second
Cout - Level Level Level Gin

Sub-stage Sub-sta e Sub-stage

Figure 4.10. OCM Stage

3rd Level 3rd Level 3rd Level 3rd Level 2nd Level
SubstgeH Sub-stage u-tg Sub-stage Sub-stage

Figure 4.11. Fifteen-bit Stage

4.3.2 Description of OCM Adder. The integration of all of the steps of the evolution results

in an adder that consists of multiple stages (see Figure 4.12). The first stage is a standard ripple

adder made from standard full adder cells. The carry out of a previous cell feeds the carry in of

the following cell. The second stage is a carry multiplexed adder stage whose largest level three

sub-stage is equal in length to the first stage. The third stage is identical to the second stage except

that it contains an additional level three sub-stage whose length is one greater than the largest level

three sub-stage of the second stage. Each successive stage is identical to the previous stage except

that it contains an additional level three sub-stage whose length is one greater than the largest

level three sub-stage of the previous stage. The final stage is a sum multiplexed adder stage. The

difference between a carry multiplexed adder stage and a sum multiplexed adder stage is that each

carry unit in a sum multiplexed adder stage contains a sum unit such that the sum output is sent
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to the multiplexer(s) instead of the carry output (see Figure 4.13). A carry multiplexed adder stage

contains one level two sub-stage and multiple level three sub-stages (see Figure 4.10). The first

level three sub-stage has a length that is one greater than the length of the second level sub-stage.

Cout - Final )_ Third Second First C-
Gu Stage - age GStagenStage

Figure 4.12. OCM Adder

Level Three Sub-stage

Level Two Sub-stage

xoR Bank

1 1 1I 11 11 1

couto Carry/Sum Bank O-0 I! II II II I

Sum0 I i I -SumO

tout MUX Bank Cin Cout MUX Bank Cin
Sum - IIIII I ll Sum

Sumi - lSumI

Coutl MUX Bank Carry/Sum Ban

sum I -I" ] I I
L-um Carry/Sum Bank -I

Figure 4.13. Sum Multiplexed Adder Stage

A level two sub-stage is composed of one or more level two adder cells (see Figure 4.14). The

first level two adder cell in the sub-stage can be a half adder because it has an assumed carry in of
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zero and one respectively to the two carry units. A level two adder cell contains one XOR-XNOR

unit, two carry units, one multiplexer, and one sum unit (see Figure 4.15). The XOR-XNOR units

receive input from the A and B bits to be added. The carry units receive input from the XOR-

XNOR unit, its respective carry in from the previous cell, and an A or B signal. The carry units

output C,,to and C,,,, respectively to the multiplexer and to the next adder cell. The multiplexer

receives C, 1O and Co ,tl from the two carry units and is controlled by the carry out from the

previous stage. The multiplexer outputs Coul to the next adder cell. The sum unit receives inputs

from the XOR-XNOR unit and carry in from the previous adder cell.

A B A B A B

C CinO Gouto
2nd Level Got2nd Level 2nd Level

Adder Adder Half Ad- Cin
CM r(uxxtI

Cell Cin I Cell der Cell (Mux Ctrl)
I I I

Sum Sum Sum

Figure 4.14. Second Level Sub-stage

A level three sub-stage is composed of two or more level three adder cells (see Figure 4.16).

The first level three adder cell in the sub-stage can be a half adder because it has an assumed

carry in of zero and one respectively to the two carry units. A level three adder cell contains one

XOR-XNOR unit, two carry units, three multiplexers, and one sum unit (see Figure 4.17). The

XOR-XNOR units receive input from the A and B bits to be added. The carry units receive input

from the XOR-XNOR unit, its respective carry in from the previous cell, and an A or B signal.

The carry units output C,0o and C0 .tl respectively to multiplexerO and multiplexerl and to the

next adder cell. MultiplexerO receives C.,t and Ct 1 from the two carry units and is controlled

by Co,,o from the previous sub-stage. Multiplexerl receives C 1o"t and C, 1 from the two carry

units and is controlled by Co,ai from the previous sub-stage. The third multiplexer receives input

from multiplexerO and multiplexer1 and is controlled by Co,,t from the previous stage. The third

multiplexer outputs Ct to the next adder cell. The sum unit receives inputs from the XOR-XNOR

unit and carry in from the previous adder cell.
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Output to Carry

XOR and Sum units

coutoCarryCinO

Mux Ctrl :

CotIarry Cin 1
Cout 1Unit

Sum
Unit Cin

Sum

Figure 4.15. Level Two Adder Cell
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The interconnections between stages, sub-stages, and cells are very critical. The Co,, from

the final central mux of a stage becomes the mux control signal for all of the next stage. The CoIJto

from the final muxO of a sub-stage becomes the muxO control signal for all of the next sub-stage.

The C,,,tl from the final muxl of a sub-stage becomes the muxi control signal for all of the next

sub-stage. Couto and C,,,, from muxO and muxl of a sub-stage are not propagated into the next

stage. Within a sub-stage, the Coto from a cell's upper carry unit becomes the C,,0 for the next

cell's Ipper carry unit. The Coti from a cell's lower carry unit becomes the C,,, for the next cell's

lower carry unit. The output from a cells two carry units are not propagated to the next sub-stage.

The Ci,, for the carry units of the first cell of a sub-stage are 0 for the upper carry unit and 1 for

the lower carry unit. In all cases, the Cot from a cell becomes the Ci, for the next cell's sum unit.

A B A B A B

3rd 3rd MuX0
L l LevelLevel . c Level I al Cin

Cout- Adder Add eAdder Mux
C 1H A d der guC e l l V,, y j M IL & C e ll C1C CC1 Cell MUXIL- i CU I Ie

Sum Sum Sum

Figure 4.16. Third Level Sub-stage

4.3.3 Performance. The optimized carry multiplexed adder is significantly better than any

other adder designed to date. Since the stage growth is quadratic it is a significant improvement

over the carry-select adder. Table 4.1 is a comparison of the number of bits that can be executed

in a given time for a carry-select adder vs. an OCM adder, assuming each adder starts with a 2-bit

ripple adder. The equation for the number of bits processed in a given time for the OCM adder is:

# bits = ! +1

The equation for the number of bits processed for the carry-select adder is:

# bits = 0 2.t + 1
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Output to Carry
and Sum units

Couto ot

Mux Mux CtrI 0

cout ou1-44

Sum
Sum Unit Cin

Figure 4.17. Third Level Adder Cell
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Gate Delay Carry-Select bits OCM bits
4 7 11
5 11 21
6 16 36
7 22 57
8 29 85
9 37 121
10 46 166
11 56 221
12 67 287
13 79 365
14 92 456
15 106 561
16 121 681
17 137 817
18 154 970
19 172 1141
20 191 1331

Table 4.1. Comparison of Carry-Select to OCM

The equation shows that the OCM adder -ives cube root performance growth with only linear logic

growth. The number of transistors required for a level three adder cell is less than that of a carry-

select adder cell. This means that an optimized carry multiplexed adder will require less transistors

than a carry-select adder, yet perform significantly faster. The performance improvement depends

on the number of bits that will be added together because of the cube root growth characteristic

(see Table 4.1, but the future trend seems to be toward words with greater number of bits. With

word lengths of 64, 128, or even 256 bits, the optimized carry multiplexed adder will soon be the

only way to obtain very high speed adding.

4.3.4 Cell Construcion. A set of bit-slice adder cells were constructed using the OCM adder

architecture. In the process of producing the cells, an extensive SPICE analysis was performed to

optimized the carry propagation time delay. SPICE is a circuit analyzer used to determine timing

parameters. Since the final chip will be fabricated using the 1.2 micron technology, the level four

Hewlett Packard 1.2 micron SPICE parameters were used for the SPICE simulations for the adder.

The results of the SPICE analysis greatly impacted the design of multiplexer cells used by the

floating point adder.

Sixteen different adder cells were created for the exponent subtracter while 26 different cells

were created for the mantissa adder, but not all of them are used in the floating point adder.

All of the cells that might be needed for any design were created, so that the cells could be used
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universally in a cell library. The cells were designed to optimize the carry delay and allow stacking

of cells such that the carry and mux signals would not require any external routing. The cells use

Gallagher's T-gate XOR-XNOR structure, but use N-type pass transistors for the carry logic, the

sum logic, and the carry-select muxes. The two types of muxes were SPICEd and it was found

that the T-gate mux was faster on average (tOR = .32 54 ,tDF = .2589) than the N-pass mux

(
t
DR = .78 2 0 , tDF = .3782) if the signal was only used to drive gates and was not being inverted

or buffered. If the signal was being used to drive another T-gate or was being buffered than it was

slower. The reason for the speed difference is the larger drain capacitance for the T-gate and the

inverter delay that is required for the N-pass transistor.

The original design for the adder cells immediately inverted the carry-in and inverted the

carry-out. This allowed for non-iaverted carry signals. The timing results for the optimized cells

are presented in Table 4.2.

Changing signal tDF toR

A 1.1568 .7000
B 1.0643 1.0016

C. .7538 .6835

Table 4.2. Timing Result of Original Cells.

It was discovered that if the carry-in signal was not inverted for the carry propagation then

the carry delay was reduced to:

Changing Cm tDF tDR

.3416 .6472

The major problem with inverted carry signals is that it more than doubled the number of different

cells needed to be designed. The half adder cells were also originally designed with non-inverted

carry signals, but were later redesigned with inverted carry signals. The times for half adder cell

are shown in Table 4.3. The times for the half subtracter are shown in Table 4.4.

OLD NEW
Changing signal I tDF t DR tDF tDR

A .6539 .7028 .3410 .3641
B .6864 .6761 .3714 .3463

Table 4.3. Timing Results for Half Adder.
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OLD NEW
Changing signal tDF tDR toF tDR

A .6481 .6931 .4167 .3896
B .6829 .6258 .3306 .3595

Table 4.4. Timing Results for Half Subtracter.

4.3.5 OCM Adder Test Chip. The OCM adder cells were tested by creating a 57-bit OCM

adder. The OCM stages were configured into a (654321, 54321, 4321. 321, 21, 2) architecture. The

test adder used the cells created for the OCM adder that is in the mantissa section of the adder unit

in the floating point adder. The test adder was fabricated onto a two micron technology tiny chip.

A tiny chip is limited to dimensions of 2200 by 2200 microns and is placed in a 40 pin dual-inline

package (DIP). See Attachment A for the pin out of the OCM Adder Test Chip.

The limited number of pins and chip area required that the OCM adder be broken into four

individually loadable sections. The result is a 57-bit adder chain that snakes across the chip in four

sections. The sections are turned onto there neighbor such that the outputs of the two leftm(st

sections and the two rightmost sections face each other. This layout configuration allowed for one of

the four branches of the input bus to be eliminated because the two center sections share a common

input bus branch. The layout also conserved space because the output probe pads from the two

facing sections on the left and right sides of the chip were staggered into a single alternating array.

Probe pads were used for the outputs because there was not enough room to fit an output

data bus nor were there enough pins to output the result.

Each section of the adder has an array of dual master-slave flip-flops (MSFF) to indepena,ntly

latch the A and B data from the input bus. The MSFFs were custom designed to shrink the data

pitch down to 48A and to reduce the usual four control signals down to only two signals(see Figure

4.18). The improvement was accomplished by using the non-inverted control signal to allow data

to pass through an N-pass transistor. The signal was then sent through a compensation inverter to

restore a high signal. The restored signal is inverted and sent through a P-pass transistor that is

controlled by the same non-inverted control signal that controlled the N-pass transistor. The signal

from the P-pass transistor is fed back to the compensation inverter, which closes the flip-flop loop.

The feedback P-pass transistor was made small because it is not required to change the voltage of

the node that gates the compensation inverter. The P-pass transistor is only used to maintain the

stored value. When the control signal is high, the input data is allowed through the flip-flop and
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the output is the inverse of the input. When the control signal goes low, the input data is cut-off

from the flip-flop, but the inverse of the output is fed back into the flip-flop.

Load ]

Out

In

Figure 4.18. Master/Slaves Flip-Flop Architecture

The dual MSFF uses two flip-flops per bit slice and has two bit slices per cell to accommodate

for the A and B data signals. The first flip-flop is controlled by a load signal that is common to

all of the MSFFs in the section. The second flip-flop is controlled by a go signal that is common

to every MSFF on the chip. To load the 114 bits of input data, the first 15 bits of A and B are

placed on the input bus and the load signal for the first section is raised and lowered. Then, the

next 14 bits of A and B are place on the input bus and the load signal for the second section is

raised and lowered. This process is repeated for the 14 bits of A and B for the third and fourth

sections. After all of the slave flip-flops are loaded, the go signal is raised and all 114 bits of data

are transferred to the OCM adder at the same time.

Four tests were performed on the 57-bit OCM adder. The first test was a power-up test to

assure that there were no shorts between power and ground. The chips drew an average current

of about 12 milliamps with Vdd at five volts. The second test checked the logic of the adder. The

third test attempted to measure the time delay through the adder. The fourth test analyzed the

noise margin for the MSFFs.

The logic of the adder was tested through two tests. The first test checked the logic of each

cell independently. The second test verified that the carry propagated correctly through the adder.

The first logic test was accomplished by wiring the A and B inputs to two switches for the

tested cell, wiring the A and B inputs to a single switch for the previous cell, and wiring the A

and B inputs to ground for the next cell. The inputs to the previous cell were wired to control the
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carry-in to the tested cell. When A and B are zero, the carry must be zero. When A and B are

one, the carry must be one. The inputs to the next cell were grounded so that the sum result would

equal the carry-out of the tested cell. Probes were connected to the sum output of the tested cell

and the sum output of the next cell to evaluate the sum and carry logic of the test cell. All 57 cells

passed each of the eight tests that corresponded to the eight possible inputs.

The second logic test was performed by grounding all of the A inputs, except for the least

significant bit, Ao, which was wired to a switch. The B inputs were wired to a separate proto-board

where each input could be individually raised to 5 volts or grounded. The first part of this test

started by setting all of the B inputs high and probing the final carry-out of the adder. The A 0

input was then switched to modify the carry output. The second part of this test verified the carry

propagation logic for each of sum outputs from the most significant to the least significant. The

inputs were configured the same as in the first part. With A 0 low, the sum output was probed for

a high. A0 was then set high to verify a low sum output. With A0 switched back to low, the B

input for the tested cell was grounded and a low sum was verified. A 0 was then set high to verify

a high sum output. The second part of the test confirmed that the carry would only propagate to

the first occurrence of a low B input.

The time delay test for the adder was performed using two high impedance, active FET-1

probes attached to an oscilloscope. The input data was set such that all of the Bs were high and all

of the As were low, except for A 0 , which was connected to a word generator configured to produce

a 500 KHz square wave with a 50% duty cycle. The first test was perform by using one probe to

monitor the A 0 signal coming from the MSFF and the other probe to monitor one of the 57 sum

outputs, So to 556, or the final carry output, Cout. The oscilloscope was adjusted to trigger on

the rising edge of A 0 so the time delay between the change in A0 and the desired output could be

measured. The results are shown in the Table 4.5. The time delay for this test turned out to be

much greater than expected. One reason for the large propagation delays in the larger stages is

that the same drivers were used to driver the control signals for the multiplexer in the small stages

as in the large stages. The delay can be eliminated by buffering the mux control lines after each

sub-stage. This demonstrates, though, that the results within a stage have approximately the same

time delay.

The magnitude of the time delay created doubt as to whether the input capacitance of the

probe was causing the delay. To test the idea, the next timing test removed the probe from the

A 0 signal and placed a standard 500 ohm, 1oX oscilloscope probe across the word generator signal

outside the chip. The scope was adjusted to trigger on the rising edge of the word generator signal.

The time delay for the most significant bits of each of the stages were measured and the results were
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OUTPUT DELAY(ns) OUTPUT DELAY(ns) OUTPUT DELAY(ns)
so 48.5 $2 61.0 S3 78.0

S, 50.5 5.o 63.0 S 39  76.0
S2  51.0 S21  61.0 S47 78.0

S3  54.0 S22  69.5 S41 76.0
S4 53.0 S 23  70.0 S 42  78.0
5s 52.0 S14 69.0 543 77.0
S 6  59.0 S2s 69.0 S44  75.0
S7 58.0 S26  69.0 545 77.0

58.0 S27 72.0 S46  75.0
S9  58.0 S23 71.0 S47 76.0

S1o 56.0 -29 71.0 S48 76.0
3il 59.0 S30 71.5 549 75.0

S 12  63.0 S31 69.0 S50  74.0
S 13  62.0 S32  69.0 S5 1  78.5
S14 60.0 S3 3  68.0 S52 77.0
S 15  59.0 S34  71.0 S53  74.0
S16 59.0 S35 68.0 S5 4  77.0
S17  64.5 S3 6  69.0 S55 76.0
S18 63.5 S3 7  76.0 Sse 79.0

Ct 56.0

Table 4.5. Time Delay from Ao to Output.

6.5 nanoseconds faster, on average. The time improvement is significant when it is realized that,

under the test's configuration, the four inverters from the MSFF were added to the propagation

delay, yet thoe time decreased.

In order to eliminate the capacitive loading of the changing input signal, another test was

performed that measured the time delay between the least significant sum, So, and other selected

sum outputs. The sum outputs are attached to probe pads, but do not drive any other circuit

elements. The results of the test are shown in Table 4.6. The least significant sum is produced by

an AND gate that should increase the total processing time an additional 1 nsec to about 31 nsec.

The propagation time can be improved to about 12 to 15 nsec by properly sizing the multiplexer

signal drivers.

The FET-I probe specifications state that the input capacitance of the probes can range from

0.2 to 5.0 picofarads. A SPICE analysis was performed assuming an 2 nanosecond rise and fall time

signal entering the sum circuitry and driving the probe pad and the FET-1 probe. The analysis

de*ermined that the sum output rise time could vary from 4 to 61 nanoseconds, and the fall time

coujd vary from 8 to 81 nanoseconds. The measured rise and fall times for So were 20 and 30
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SUM OUTPUT RISE T!ME DELAY(ns) FALL TIME DELAY(ns)
S, 2.0 -1.5
S3  3.0 -1.0
-q 4.0 0.0

S11  5.5 5.5
$21 14.0 9.0
S36  22.0 21.0
S5 6  30.0 31.0

Cou 51.0 9.0

Table 4.6. Time Delay from So to Output.

nanoseconds, respectively. The wide range of the input c-tpacitance explains why the time delays

are so great in Table 4.5, and it also explains why some of the values are negative in Table 4.6.

The last test that was performed on the chip was the noise margin test. Since the chip pads

buffer all of the input data to the adders, the noise margin test really only tested the noise margin

of the chip pads. The test was performed using two power supplies, two volt meters, and a standard

micromanipulator probe.

The first power supply was used to set Vdd at exactly 5.0 volts. The second power supply was

connected to the input pin of the chip as an input to the MSFF. The control lines for the MSFF

were set high to allow the input signal to pass through the MSFF.

The ground lines of the power supplies were tied together to form a common ground. The

probe was used to measure the MSFF voltage output. The volt meters were configured sucb that

one read thL input voltage to the chip pad and the other read the output voltage from the MSFF.

The input voltage was slowly dropped from 5.0 volts until the output voltage was no longer 5.0

volts, which occurred at 2.24 volts. Then the input voltage was raised from 1.8 volts until the

output voltage was no longer 0.0 volts, which occurred at 2.17 volts. The results conclude that the

width of the transitional region is only 0.09 volts. The results of the test are important because

the same chip pads were used for the floating point adder and the laser programmable ROM.

4.4 Components of the Floating Point Adder

The floating point adder can be logically divided into an adder unit and a noimalize unit

(see Figure 4.1). The adder unit shifts mantissas and adds the two numbers together, while the

normalize unit normalizes the resulting number.
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4. 41 .Idder Unit of the Floating Point Adder. The adder unit receives its data from the A

and B busses of the LPASP It is currently desig:ied to store the values from the A and B busses in

a bank of interleaved master-slave flip-flops A control signal from the microcode determines when

data is loaded in the register. The adder unit consists of three sections to process the sign bit, the

,xponent. and the mantissa of each number (see Figure 4.1). The majority of the processing occurs

in the mantissa section where the smaller number is shifted by the difference of the two exponents

and added (subtracted) to (from) the larger number.

4.4.1.1 Sign Bit. The sign bits are the easiest to process. Subtraction (A - B only)

is performed by complementing the B sign bit. This is accomplished by an exclusive-or of the

subtract signal with the B sign bit, which becomes the new value of the B sign bit. The floating

point adder macrocell assumes that this logic has occurred before it receives the B sign bit. The

.4 and B sign bits are stored in a master-slave flip-flop and then sent to a 2 to i mux which selects

the sign bit of the largest number. The mux select logic is EA>B + (EA=B * MA>B) (see Figure

4.1 for the definitions of the control signals). If the select logic is low then the result sign bit is A's

sign bit, and if the select logic is high then the result sign bit is B's sign bit (see Figure 4.19).

4.4.1.2 Exponent. The exponent processing logic receives the eleven bit exponent from

the exponent section of the main register. It calculates the difference between the two exponents,

determines if A is larger then B (EA>B), determines if A and B are equal (EA=B), determines if

the individual exponents are all zeros or all ones (EAO, EBo, EAt, EBI), determines if both A and

B are all zeros (lgrO), and passes the larger of the two exponents on to the normalize unit.

To calculate the difference between the exponent of A and the exponent of B, the two expo-

nents are subtracted by an OCM adder with the exponent of A bitwise complimented and a carry-in

of one. Two subtracters are required since the adder doesn't know which exponent is larger, and

it would take too long to calculate the two's compliment of the result if the larger one had been

subtracted. The original design was going to use a single AE B unit for both of the adders, but the

added complexity wasn't worth designing special cells just for six bits. An additional savings was

gained by realizing that if carry-in I then sum = A ( B B 1 = A D B and carry-out = A + B,

and it carry-in = 0 then carry-out = A * B (see Figure 4.20). The structure of the first adder,

eleven bits wide, is an optimized carry-multiplexed adder with dimensions (43, 4), where the "43"

represent the second stage of the OCM adder, which includes a carry select adder of 4 bits driven

by a ripple adder of 3 bits and the "4" represents the first stage of the OCM adder, which consists

of a ripple adder of 4 bits driving the "43" adder group. The main subtracter is 990A oy 158A.

The second adder, six bits, receives A and B from six additicnal registers that contain the same
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Figure 4.19. Sign Bit Logic
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data as the registers for the six least significant bits of the exponent. The registers were added to

simplify the data routing. The second adder is a normal carry select adder of three bits driving

a three bit carry select. The inverse of the carry-out of B - A is the EA>B signal, which is used

as the select control to mux the results of the two subtracters and output the difference between

the exponents. The E.4 >B signal is also used as the select control to mux the two exponents and

output the larger of the two exponents (see Figure 4.21). Since the results from the adder cells are

only used to calculate EA=B, the driver from the sum signal is very small.

The calculations for EAO, EBO, EAt, EBI, and EA=B use the same logical unit (see Figure

4.22). For EAC and EB0 the exponent bits are NORed together. For EAt and EB1 the exponent

bits are NANDed together. For EA=B the resulting bits from the B - A subtracter are NORed

together. A pseudo NMOS NOR is used with 11 N-transistors and 1 P-transistor whose gate is

tied to ground. The length of the P-transistor gate is modified to produce an output low signal of

.5V. The gate length of the P-transistor has been modified instead of modifying the N-transistor's

width because this will save area and the delay is not critical for these signals. The gate length for

the NOR is 6A.

Control signals for the mantissa multiplexers have been realized in the exponent area because

there is more room and the exponent signals are used to determine the mux controls (see Figures

4.23 - 4.26).

4.4.1.3 Mantissa. The mantissa section is the largest part of the adder unit. The

mantissa section determines which mantissa is largest, multiplies the mantissa by two if it is denor-

malized, places the smallest number on the left processing side, shifts the smaller number's mantissa

to match the largest number, determines if an add or a subtract is required, and adds the mantissas

together. It consists of eight substructures: the mantissa processing logic, the denormalizing mux,

the swap crossbar, the infinity mux, the not-a-number (NAN) mux, the right linear barrel shifter,

the subtraction mux, and the final OCM adder (see Figure 4.1).

MANTISSA PROCESSING LOGIC. The mantissa processing logic (MPL) substructure receives

the mantissa of A and B from the mantissa section of the main register. It must calculate three

signals: MAO, MBO, and MA>B. MAO and MBa are determined using the same pseudo nmos NOR

gate that is used in the exponent processing logic, except that these gates use 52 N-transistors

instead of eleven. The M4>B signal is determined by using a 52 bit subtracter to subtract A

from B, the same way that the EA>B signal was determined. A major difference between the two

subtracters is that the mantissa subtracter does not require the sum, which decreases the adder

cell by 22 transistors per bit (see Figure 4.27). A modified optimized carry-multiplexed adder with
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dimensions (65432, 5432, 432. 321, 3) and an inverted final carry-out is used to calculate MfA>B.

The inputs to the adder are A, B, and an assumed carry-in of one. The fact that the initial carry-in

is one allows the carry-out of the first bit-slice to be realized by A + B.

The mantissa comparator uses seventeen different cells in its structure. The cells are much

simpler than the regular adder cells. Each cell is 48A high, while the width varies up to 136A. The

final comparator is 4948A by 136A, but about half of the space is empty because the comparator

cells do not stack. The empty space is used for the MAO and MBO logic and to route A and B into

the denormalize mux.

DENORMALIZE MUX. While MA>B is being calculated, A and B passes through the denormalize

multiplexers (see standard mux Figure 4.28). The denormalize mux selects the number with UX
tacked in front (to include the assumed one for a normalized number or a zero for a zero number)

or it selects the number with a zero tacked on the end (for a denormalized number). The signal

that controls the mux is EAO * M for the A mux and EBo * MB? for the B mux. The denormalize

mux can easily operate before the OCM comparator from the MPL substructure can finish, so it is

not on the critical path. The output of the mux goes to the swap crossbar.

SWAP CROSSBAR. The swap crossbar places the smallest number on the left bit-slice. It is

simply two multiplexers controlled by opposite signals (see Figure 4.29). The crossbar swaps if the

exponent of A is larger than the exponent of B or the exponents are equal and the mantissa of A

is larger than the mantissa of B. It is controlled by EA>B + (EA=B * MA>B). The smaller number

leaves the crossbar and enters the infinity mux, while the larger number leaves the crossbar and

enters the not-a-number mux.

INFINITY MUX. The infinity mux handles the conditions where the largest number is infinity

or not-a-inumber or the difference between the magnitude of the exponents is greater than 63.

Under these conditions the smallest number is set to zero so that it won't alter the infinite number

or the not-a-number when the two are added. If either number has an exponent of all ones or

the five high order bits of the exponent subtracter are not all one or all zero, then this mux

outputs all zeros; otherwise, it passes the number unaltered. The control for the infinity mux is

EAi + EB1 + Overshift. The original architecture for the floating point adder did not contain

the logic required to handle the condition for the difference between the exponents. By setting the

number to zero, the linear barrel shifter can shift any distance and not alter the number. If the

difference between the exponents exceeds 63 then the smaller number is insignificant and won't

alter the value of the larger number.

4-32



A BA

carr Aor

cl

Figre 4.7CMCmar ito (321,3

4-.33



Control

A

Control

B

Control

Figure 4.28. 2 to 1 Mux

A B

Control Conrol Croro

Figure 4.29. 2 x 2 Crossbar

4-34



NAN MIUX. The not-a-number mux handles the condition of trying to add + and - infinity. it sets

the largest number equal to not-a-number if the two numbers, A and B, are both infinite but have

opposite signs; otherwise, it passes the number unaltered. Since the mantissa of not-a-number is

anything but all zeros, this mux can the reduced down to entering a one in the two high order bits

of the number. This implementation requires only two 1-bit muxes and saves 204 transistors from

the initial design. The structure created by the three muxes and crossbar is 3926A by 158A.

LINEAR BARREL StiFTER. The right linear barrel shifter receives the output of the infinity

inux and logically shifts it the number of bits specified by the difference between the exponents.

The controls for the shifter come from the exponent processing logic unit.

The shifter design was supposed to be the easiest structure because the design was going to

come from the existing barrel shifter in the LPASP. But, the LPASP barrel shifter is 32 bits wide

and takes over 3000A by 800A. If the same cells were used then a 53 bit barrel shifter would take

too much space. The cells were redesigned by using the N-pass transistor technique used for the

earlier muxes. The new design only required about 600A width, which is acceptable.

SUBTRACTION MUX. The subtraction mux receives its input from the shifter. If the signs of

the two numbers are opposite then the mantissas need to be subtracted and the smaller number's

mantissa is inverted. The subtraction mux passes the inverted number if the sign bits are different;

otherwise, it passes the number unaltered. It is controlled by SignA E SignB. The output of the

mux goes to the carry select adder. The subtraction mux uses the same mux cell as the other

muxes.

FINAL OCM ADDER. The final OCM adder adds the shifted mantissa of the smallest number

and the mantissa of the largest number together. If the sign of the two numbers is different then

the carry-in is set to one for a subtract; otherwise, it is set to zero for an add. While the smaller

mantissa is being shifted, th,- larger mantissa is buffered up in order to drive the carry chains of the

carry select adder. Since the first four bits of the adder have an input of B = 0, the XOR unit is

not needed. Instead, the A lines are used to control the summation xor and the carry chain xor is

replaced with A * Ci, using a standard AND. The standard AND logic was faster than the T-gate

because the output of the gate had to drive another pass transistor. The remainder of the adder is

an optimized carry-multiplexed adder with dimensions (654321, 54321, 4321, 321, 21, 2+1). The

-2+1" represents a 3-bit ripple half adder that is equivalent to 2 ripple adders because the XOR

logic isn't needed. The final carry-out for the adder is not used, so 58 bits are sent on to the priority

encoder of the normalize unit.
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The mantissa adder uses the same cells as the exponent subtracters except thi-t the sum

drivers were larger. The mantissa adder requirod some additional unique cells because the first four

bits of B are zero. For this situation a quarter adder cell was created and some half adder cells

without buffers were created. The total number of different cells designed for the mantissa adder

is 26. The final structure is 5351A by 158A.

4.4.2 Normalize Unit of the Floating Point Adder. The normalize unit takes the summat.in

results from the exponent and mantissa sections of the adder unit and normalizes the resulting

number. The normalize unit uses seven different substructures to perform the normalizaticn. They

are the result signal generation, an incrementer, an OCM subtracter, a shift control mux, a left

linear shifter, an exponent mux, and a mantissa mux.

4.4.2.1 Result Signal Generation. The result signal generation is a substructure used

primarily to determine the number of bits that should be shifted to normalize the result of the

adder unit. This structure generates two signals. The first signal detected an all zero fraction and

is called FractO, while the second signal is the shift number and is called LdlPos. The LdlPos

signal is created by a priority encoder.

FRACTO. To detect an all zero fraction, non-standard CMOS logic was used. The logic consists

of 58 N transistors in parallel for the pulldown side and a single p transistor on the pull up side.

The W/L ratio (n to p) is 4 (designed for worst case when only one n transistor is on). Normally

the length is held constant and the width adjusted. However, ;n this case it was better to adjust

the length to keep the size of the transistors reasonable.

LD1POS. The priority encoder was by far the most challenging portion of the normalize unit.

LdlPos takes 58 inputs and outputs how many bits the mantissa must be shifted. The first plan

of attack was to simply use boolean algebra and reduce the function and implement directly. This

was not practical for several reasons. First, as the number of input bits increase for a priority

encoder the complexity of even the reduced functions grows rapidly. Second, the boolean fuaction

reduction tool ezpresso did not work properly. Third, reducing a 58 input bo-!ean function would

be extremely error prone.

A better design was created using a tree of nor gates and multiplexors. The operation of the

tree is illustrated in this simplified 8 bit example:

The first 4 bits are checked for all 0 (a NOR operation). If the first 4 bits are 0 then
the shift must be at least 4 bits. Therefore the most significant bit of a three bit output
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count is a 1. This is exactly what the nor gate outputs for all zero. So the nor result is
the most significant bit directly. Next a nor is taken of the first 2 bits and of the fifth
and sixth bits. One of these nor results will be the next most significant bit. The msb
is used to determine which of the nors will be used. This type of logic continues down
to the least significant bit. In this case, though, four nors are used and which nor is
used depends on both of the previous results.

The nor portion of the circuit was built mainly with three cells:

twobit a twobit slice with 2 n transistors

twonowire a cell of the same dimensions of twobit -used as a placeholder

ptran a cell with 2 p transistors to complete 2 bit slices

The nor portion of the circuit was designed and constructed by Capt Chuck Wardin as )art

of his EE695 class project. The signals from the nor portion were used for the selection and control

of a sparse matrix of multiplexers. The multiplexers used the same standard mux cell and were

arranged as described to generate the correct six LdlPos signals.

4.4.2.2 Incrementer. The incrementer is used to increment the resulting exponent

that comes from the adder units. The incremented exponent is then available to the expont at mux

to be chosen in the case were the most significant bit of the resulting mantissa (2nd) is a one. In

this case, the mantissa is shifted right one bit and the exponent is incremented.

The incrementer was generated by using some of the half adder cells that were created for the

OCM adder. It was configured in a straight ripplk half adder design, which is very slow and simple.

A ripple adder design was feasible because the exponent result from the adder unit is determined

long before the mantissa is determine, which provides plenty of time to settle an l-bit half adder.

Attached to the incrementer is a detect all ones cell. The detect all ones signal is generated

by inverting the output of the incrementer and sending the result through a pseudo NMOS nor

gate. The nor gate design is the same as all of the other nor gate designs used to detect all zeroes.

4.4.2.3 OCM Subtracter. The process of normalization requires the manipulation of

both the mantissa and the exponent. If the mantissa is shifted to the left by the amount specified

by LdlPos then the same amount mast be subtracted from the exponent. The subtraction is

prformed by an I 1-bit OCM subtracter.

The subtracter is identical to the I1-bit OCM subtracter used in the exponent processing logic

of the adder unit, except that the sum outputs have larger drivers. The inputs to the subtracter
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are the exponent from the adder unit and the inverted value of LdlPos. The borrow out of the

subtracter is used as an underflow signal to control both the mantissa and exponent muxes.

The output of the subtracter goes through an 11-bit pseudo NMOS nor gate to the exponent

mux. The nor gate determines if the output of the subtracter is zero, (allO). The allO signal is used

as part of the control logic for the mantissa mux.

4.4.2.4 Shift Control Muz. The shift control mux in needed for the condition were

the value of LdlPos exceeds the value of the exponent coming from the adder unit. In this case,

the smaller of the two "tumbers is used as the shift control and the number is left in the IEEE

floating point denormalized format. The underflow signal from the OCM subtracter is used to flag

this condition, so it is the control signal to the shift control mux. The inputs to the mux are the

six least significant bits of the exponent from the adder unit and the six bits of the LdlPos. The

outputs from the mux are the control signals for the left linear shifter.

4.4.2.5 Left Linear Shifter. The left linear shifter is the structure that shifts the man-

tissa such that the leading one is just to the left of the decimal point. The shifter uses the same

architecture as the right linear shifter, except that the shifted bits are routed to the left instead

of being routed to the right. The number of positions that the mantissa is shifted comes from the

shift control mux, which is described in the previous section.

4.4.2.6 Exponent Mur. The exponent mux chooses between one of four possible results

for the exponent. The mux is designed using three T-gates and an N-pass transistor.

The pass transistor is, 3ed to gate in a zero result, which satisfies the conditions where the

mantissa is all zeroes or the first and second bits to the left of the decimal of the mantissa are

zero and an underflow occurred. The resultant value from the OCM subtracter is selected for the

condition where the first and second bits from the decimal of the mantissa are zero and an underflow

did not occur. The original value from the adder unit is selected for the condition where the second

bit from the decimal of the mantissa is a zero and the first bit from the decimal of the mantissa

is a one. The incremented value of the exponent is selected for the condition where the second bit

from the decimal of the mantissa is a one.

4.4.2.7 Mantissa Mu:. The mantissa mux is used to choose between the five possible

values for the mantissa. The mantissa mux is a five-to-one mux that uses four T-gates and one

N-pass transistor to gate in a zero result.
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The mantissa is set to zero for the condition where the second bit from the decimal is a one,

but the incremented exponent results in all ones. An exponent of all ones represents an infinite

number if the mantissa is zero. The mantissa is shifted to the right one bit for the conditions where

the second bit from the decimal is one and the incremented exponent is not all ones or the second

bit from the decimal is zero, the first bit from the decimal is one, and the largest original exponent

in the adder unit is zero. The later condition covers the case of adding two denormalized numbers

without resulting in a carry. The result from the left linear shifter is selected for the "normal"

condition where the second and first bits from the decimal are zero, there is no underflow, and the

result from the OCM subtracter is not zero. The result of the left linear shifter is shifted right

one bit for the condition where the second and first bits from the decimal are zero and either an

underflow occurred or the result from the OCM subtracter is zero. This last condition places the

mantissa in the IEEE standard denormalized format. The number must be left as a denormalized

number because the exponent is zero and can not be decreased below zero.

4.5 Floating Point Adder Test Chip

A test chip was produced of the floating point (FP) adder on a 84-pin chip. The chip was

fabricated using a two micron feature size process. Sixty-four of the chip's pins were bi-directional

to accommodate the input of the A and B numbers and the output of the resulting addition.

Five input pins were used for control signals. The bi-directional pins were controlled by an enable

signal. When Enable is low, the pads are configured to input. When Enable is high, the pads are

configured to output. The A and B numbers are loaded individually by a LoadA and a LoadB

signal. Two clock signals gate the data through the master-slave flip-flops. See Appendix B for the

pin out of ,:,e floating point adder test chip.

The floating point adder used for the test chip is slightly different from the one that will be

in the LPASP. The difference is in the load signal for the master-slave flip-flops (MSFF). The test

chip required two load signals, so the MSFFs were modified to accommodate the two load lines

instead of the single load line that is required for the LPASP. The extra load signal was added to

allow multiplexing of the A and B input data.

4.5.1 Test Results. The FP adder chip was tested on the DAS 9200 logic analyzer. The

bi-directional pins were wired to a forcing probe and a sensing probe to allow for both input and

output. The remaining control pins were wired to the return-to-zero (RZ) channels of the forcing

probes. The RZ channels allow for variations in pulse delay and pulse width so that AC parametric
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tests could be performed. Four tests were performed on the 32 test chips to test for shorts between

power and ground, chip logic, control AC parametrics, and logic propagation delay.

4.5.1.1 Power- Up Test. The pnwer-up test was performed by setting all of the data

inputs low and the MSFF control signals high. This configuration sets all of the chip's transistors

to a stable state. The chip power was then slowly increased from 0.0 volts to 5.0 volts and the

current through the chip was measured. Two of the 32 chips did not pass this test, but the current

of the remaining chips ranged between seven and ten milliamps. The resistance of the two failing

chips was 15 ohms and 20 ohms, respectively.

4.5.1.2 Chip Logic Test. The chip's logic was tested by running each chip through a

battery of 30 test vectors. The test vectors were chosen to individually test each of the various

paths within the FP adder. The adder unit of the FP adder was tested with denormalized numbers,

zero, swapping mantissas, not-a-numbers, infinity, exponents differing by greater than 63, mantissa

shifting by 1, 2, 4, 8, 16, and 32, and subtraction. The normalize unit of the FP adder was tested

for the conditions of an incremented exponent, an unaltered exponent, a shifted mantissa by 1, 2,

4, 8, 16, and 32, a zero mantissa, an exponent underflow, infinity by incrementing, of the exponent,

two denormalized numbers resulting in a denormalized number, an unaltered mantissa, and a zero

exponent.

The logic testing resulted in the discovery of a wiring error made in the left linear shifter of

the normalize unit. The gates of the transistors used to shift in trailing zeros for the shift-by-4 and

the shift-by-16 rows of the left shifter were wired to the noshift signal instead of the shift signal.

The result is that when a shift is supposed to occur, the least significant 4 bits or 16 bits (depending

on the row) of the mantissa become dynamic nodes. When a shift is not supposed to occur, the

least significant bits become tied to ground and their data is lost. Since the least significant four

bits are guard bits, only the least significant twelve bits of the resulting mantissa are affected. The

error affects the output when the number from the adder unit needs to be normalized; otherwise,

the output is perfectly correct. This error will occur in less than 1 out of every 4.2 million possible

input combinations.

The logic testing also discovered a fabrication error in two of the remaining 30 chips. The

fabrication error seemed to cause the Overshift signal to be incorrect and it complimented the

sign bits of the zero and not-a-number (NAN) results. The latter condition is a logic error but not

an output error since the sign bit for zero and NAN is undefined. Combining the results of the two

tests gives a fabrication yield of 87.5%.
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4.5.1.3 Control AC Parametncs Test. The next set of tests analyzed the AC para-

metrics of the control signals. The DAS 9200 allows variations in the pulse delay and the pulse

width of the RZ channels of the forcing probes. The pulse delay can range from 5 nsec to 99 nsec by

increments of 1 nsec. The pulse width can be 5 nsec or range from 10 nsec to 80 nsec by increments

of 10 nsecs. The LoadA and LoadB signals were set with a pulse delay of 5 nsec and a width of 10

nsec. The chip worked with the width of the clock signals set at the minimum of 5 nsec, but the

leading edge of PQ2 had to trail the leading edge of the load signals by 1 nsec, and the leading edge

of PQ1 had to trail the leading edge of PQ2 by 12 nsec. It was also discovered that the Enable

signal required 29 nsec to switch the pads from being input pads to being output pads.

4.5.1.4 Logic Propagation Delay Test. The final test of the FP adder analyzed the

amount of time required for th, data to propagate through the chip. The control signals were set

according to Table 4.7. The acquisition sense delay was fixed at 40 nsec, while the PQ1 pulse delay

was varied. The propagation time was calculated from the time that PQ1 was set high to the time

that the data pins were sensed.

Signal Pulse Delay Pulse Width
LoadA 5 nsec 10 nsec
LoadB 5 nsec 10 nsec
PQ1 varied 5 nsec
PQ2 6 nsec 5 nsec

Enable 5 nsec 80 nsec

Table 4.7. Control Signal Settings for Propagation Test

Four tests were performed to characterize the propagation time. The first test measured the

longest propagation time of the original 30 test vectors without any errors. The fastest chip had a

propagation time of 291 nsec. The second test was the same as the first test except that it allowed

for one bit to be in error. The result was a propagation time of 272 nsec. The third test ignored the

errors produced by the test vector where the mantissa was normalized by 32 bits, and the result

was a propagation time of 183 nsec. The fourth test eliminated the seven test vectors that caused

normalization of the mantissa to occur. This left 23 test vectors with a propagation time of 132

nsec.

The reason for the improvement in propagation time is that each successive test used less

of the faulty left shifter. The final test did not use the left shifter at all and produced the best

time. The error in the left shifter is causing the extra delay because its nodes are either dynamic

or they are fighting, which extends the amount of time required to settle. The propagation times
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were measured using off-chip signal times. The on-chip propagation time can be determined by

subtracting the propagation delay of the 1/0 pads. According to MOSIS documentation, the

propagation delay of an I/O pad is about 10 nsec. The resulting on-chip propagation of the FP

adder is about 122 nsec. The FP adder used an OCM adder design whose multiplexer signal drivers

were not sized properly. An FP adder with properly sized multiplexer drivers and a correct left

shifter should have a propagation time of about 90 nsec.
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V. Laser Programmable Read-Only Memory

5 1 Introduction

The laser programmable read-only memory (LPROM) is the unit that gives the LPASP its

flexibility. The LPROM structure is used in three different sections of the LPASP. The largest

section is the ROM area where the microcode is stored. The other two sections are the function

ROM and the MAP ROM. This chapter will present the LPROM by giving a historic background of

some of the laser applications for integrated circuits followed by a discussion of two laser test chips

that were created to learn more about laser applications. The last half of the chapter addresses the

components of the newly designed LPROM and Lhe design, fabrication, and testing of the LPROM

test chip.

5.2 Background

5.2.1 Introduction. One problem with typical integrated circuit (IC) implementations is

that their designs can not be modified after the circuit has been fabricated. Integrated circuits do

not contain wires that can be pulled from one location and soldered someplace else. A solution to

the problem is to use laser beams to cut or weld circuit wires. Lasers are well suited for cutting or

welding ICs because the laser's beam diameter is as small as the connecting lines in ICs. The laser

modifications are made during the development and test phase of a chip's design to neip detect

design flaws or to configure the circuit for some unique task. This background section will focus

on how lasers have been used for debugging integrated circuits, restructuring integrated circuits,

modifying diodes, hardwiring cell units, and programming read-only memories (ROMs).

5.2.2 Debugging Integrated Circuits. In 1985, a group from the research laboratories of

Hitachi Ltd. approached the problem of debugging ICs by using laser beams to cut out bad

areas of the circuit(20). They found that .53 micron laser light was absorbed by the top 50 to

100 angstroms of an aluminum layer, which was the same thickness as the aluminum used for

IC fabrication. When the aluminum wire was exposed to the laser beam for between 190 to 280

nanoseconds, the aluminum was explosively removed by the high aluminum vapor pressure. If the

beam duration was longer than 280 nanoseconds, the silicon layer under the metal line was damaged

and the circuit was destroyed.

In order to match the correct laser light and duration, a nitrogen pumped dye laser with a

.51 micron wavelength and a pulse duration of 12 nanoseconds was used. The laser had a power

density of .5 x 109 watts per centimeter squared and was used on 1.75 micron thick aluminum lines.
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They found that if the power density was too low, then the metal would just melt and re-solidify,

but if it was too high, then the silicon underlayer would be damaged.

They expcrimented with two types of irradiation methods. The first method, called spot

scanning, performed overlapping circular spot scans across the wire. This method was not very

effective because it caused damage to the underlayer silicon. The second method, called single shot,

used a circular or square spot that was large enough to cut the line with only one pass. They found

that the square spot made a cleaner cut than the circular spot, and that the best spot width was

between 4.5 and 5.3 microns for a four micron by two micron cut.

5.2.3 Restructuring Integrated Circuits. The researchers at Lincoln Laboratories proposed

an alternative approach for modifying integrated circuits with a laser. They wanted to be able to

connect structural units together on a wafer after it had been fabricated. By designing a wafer with

a large number of unconnected, very common circuit elements, they had the capability to quickly

connect up a variety of circuits from the same wafer(14). The idea was to mass produce the wafers

and store them on the shelf until one was needed for some specific application. At that time, the

wafer connections would be made by the laser, and the development time would be significantly

reduced.

To accomplish the connection faculty, a overlapping grid of metal lines were placed on the

wafer. Each structural element was connected to a metal line. The metal lines were isolated from

each other at their intersections by a layer of silicon. To make a connection, the aluminum-silicon-

aluminum sandwich at the intersection was heated with a one millisecond laser pulse from a one to

two watt laser. The heat caused the aluminum and silicon to melt together and form an aluminum

silicon alloy, which is a good conductor.

They found that the resistance at a heated, or formed, link was less than one ohm, while the

resistance at an unformed link was greater than one giga-ohm. The problem with this technology

was that the unformed links created significant capacitive loads, which slow down circuit speeds.

Lincoln Labs demonstrated the feasibility of using this method by creating a digital integration

system used to enhance signal to noise ratios and by creating an array of serial multiply-accumulate

cells used to realize a fast Fourier transform processor and a constant false alarm rate (CFAR) filter.

5.2.4 Modifying Diodes. One problem with using lasers on integrated circuits is that the

laser leaves craters wherever it scans. The craters make it very easy for the competition to reverse

engineer what has been done to the chip. In 1987, two professors at Texas A&M found the solu-

tion to this problem and created an additional method of using a laser for IC modifications(1l).
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They found that the minority-carrier lifetime in silicon could be decreased at least three orders of

magnitude if the surface of the silicon were scanned with low powered green laser beams. The laser

beam power is so low that it does not create a crater.

The heart of their cell structure was two revere biased diodes placed between power and

ground. The point between the two diodes was connected to the gate of a transistor. When a

reverse biased diode is scanned by the laser, its minority-carrier lifetime decreases and its reverse

bias current increases. Therefore, if the top diode of the structure was scanned, then the transistor

was turned on, and if the bottom diode of the structure was scanned, then the transistor was turned

off.

They used the diode cell structure to create a 256-bit programmable read-only memory

(PROM). The memory cells have the disadvantage of being larger than the average memory cell

because a diode takes more space to create than a transistor. The access time for the PROM was

130 nanoseconds with a 160 nanosecond precharge. The PROM could only handle a maximum

frequency of 3.44 megahertz.

5.2.5 Hardwiring Cell Units. The Air Force Institute of Technology (AFIT) has also per-

formed research in the area of laser scanning of integrated circuits. In 1987, Capt Spanburg at-

tempted to use a laser to hardwire a 32-bit comparator and brial multiplexer(18). The idea was

to mass produce generic 32-bit comparators and serial multiplexers in the same way that Lincoln

Labs planned to do with its wafers. When a comparator was needed, it would be taken off the shelf

and hardwired with the laser.

The cell for the comparator was designed using the source of a transistor connected to the

input of an exclusive-or (XOR) gate and tied through a long metal line to ground. The drain of

the transistor was connected to power. If a high voltage was required as the input to the XOR

gate, then the long metal line was cut with the laser. If a low voltage was required, then the cell

was left alone.

To accomplish the metal cutting, a neodymium-doped yttrium aluminum garnet (Nd:YAG)

laser with wavelength of 1.06 microns and output power of.1 joules was used. The beam diameter

for the Nd:YAG laser was 6.35 millimeters with a pulse duration of 20 nanoseconds. The beam

needed to be magnified by 635 times to reduce its diameter to 10 microns, but the magnification

could not exceed 375 times because the power density of 4 x 106 watts per centimeter squared

would exceed the required power density limit for cutting aluminum. Unfrtunately, the required

optics were not available, and Capt. Spanburg never succeeded in using the laser.
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5.2.6 Programming Read-only Memories. Another AFIT student, Capt. Tillie, decided to

continue the work started by Capt. Spanburg, but in a slightly different direction. Capt. Tillie's

goal was to design a laser programmable read-only memory using a new technology developed at

Lincoln Laboratories called diffusion linking(19). For diffusion linking, two areas of silicon are

doped next to each other, but separated by 5 microns. When the gap between the two areas is

heated by a laser, the dopant will diffuse across the gap and form a conductor. The advantage

of diffusion linking is that connections can be made instead of broken, and the overglass is not

damaged by the laser (in most cases).

In order to heat the silicon, a argon-ion laser is needed. The laser outputs a 70 to 80 mi-

crosecond pulse with a wavelength of 510 nanometers. The optimum power output for diffusion

linking is 3.5 watts.

Capt. Tillie was able to incorporate pattern recognition to improve the automation of pro-

gramming the memory. The pattern recognition was used to precisely align the laser on the chip.

Capt. Tillie created a test chip but he was unsuccessful in programming the memory because the

precision of the shutter system was not adequate to properly pulse the laser, and he didn't have

the correct parameters to control the laser.

5.2.7 Conclusion. Design modifications after an integrated circuit is fabricated can easily

be accomplished with the use of a laser. The research labs at Hitachi Ltd. performed a number

of experiments that have become the foundation for all subsequent research in the area of metal

cutting with lasers. The innovations from Lincoln Labs are very promising, but they can only be

used in a limited application where the capacitive loading is not critical. The memory chip created

at Texas A&M is an interesting application of solid state physics, but is limited by the large size

of the diodes and the slow read access time. The AFIT research is the most discouraging, since a

successful application of this technology had not occurred.

5.3 Laser Technology Test Chips

Before any further work could be performed on the laser programmable ROM (LPROM), a

design decision had to be made as to whether to use diffusion linking, as Capt Tillie had tried, or

to use metal cutting. The solution to the problem required that two test chips be designed and

fabricated to compare the two techniques. The first test chip contained simple diffusion linking

structures, while the second test chip contained simple metal cutting structures. Both test chips

were fabricated through MOSIS. The pads were left completely bare, without stati. protection or

data buffering, in order to make resistance checks across the laser structures.
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5.3.1 Dzffusion Link Test Chip. The diffusion link test chip contained a wide variety of

diffusion link structures, but all of them fell into one of two categories: not containing a transistor

or containing a transistor.

The structures that did not contain a transistor were simply a strip of N-diffusion with a

three micron gap cut in the middle of the strip. 'Three different widths for the N-diffusion strip

were created to test a four micron link, an eight micron link, and a twelve micron link. One end

of the strip was connected to a probe pad, while t'e other end of the strip was tied to a common

metal line that connected a row of these structures to a bonding pad on the side of the chip. All

eighteen of the side bonding pads were used to connect rows of the "no-transistor" diffusion link

structures. The purpose of the "no-transistor" structures was to test the resistance across the strip

after the diffusion gap was li.ked by a laser.

The structures that did contain a transistor were identical to the "no-transistor" structures

except that a polysilicon line was placed across the N-diffusion strip to form a transistor. The

polysilicon line was accessible through an additional probe pad so that a voltage could be applied

to turn on the transistor. The same three widths were used for the N-diffusion strips as in the "no-

transistor" structures, but the gap in the strip was placed at various lengths from the transistor.

Groups of the "transistor" structures were connected to the inside edge of the top and bottom

row of bonding pads. A modified version of the "transistor" structure, containing probe pads on

both sides of the N-diffusion strip, were placed in the center section of the chip between the "no-

transistor" rows. The purpose of the "transistor" structures was to see how close a laser link could

be placed to a transistor without affecting its performance. The laser link distance from a transistor

.s a critical issue in a ROM because it affects how dense the ROM can be made.

5.3.2 Metal Cutting Test Chip. The metal cutting test chip is almost identical in design as

the diffusion link test chip. The difference between the two test chips is that the metal cutting test

chip replaced the N-diffusion strip and its gap with a solid strip of metal. The same three different

strip widths were used as in the diffusion strip, and the same two categories of structures were used

that either contained or did not contain a transistor. The left half of the chip has "no-transistor"

structures that use metall, while the right half of the chip has "no-transistor" structures that use

metal2. All of the "transistor" structures use metall. Since the metal strip is solid, the laser cut

can be made anywhere on the strip to perform the distance test for the transistor.

5.3 Lincoln Labs Testing. As was mentioned in a previous section, the AFIT laser work-

station .hat was created by Capt Spanburg and improved by Capt Tillie is not adequate to perform



the delicate work of diffusion linking(19). Fortunately, the researchers at Lincoln Laboratories al-

lowed me to use their facilities to irradiate and test the two laser test chips. The trip to Lincoln

Labs was very educational and accomplished the goal of demonstrating the ability to cut metal

lines and link diffusion regions with a laser. This section will discuss the equipment used to perform

the cutting and linking, present some of the problems that have been discovered, explain the tests

that were performed on the two tiny chips, and conclude with a recommendation on which method

should be used for the LPROM design.

5.9,3. 1 Equipment. Lincoln Labs uses slightly different equipment then the AFIT laser

workstation. It is capable of making seven links or cuts per second. They use an argon ion laser for

linking diffusion and cutting metal. The only differences that they make between the two processes

is the amount of power that is used. The linking process uses 2 - 3 times more power than cutting.

The power for the laser is completely computer controlled, so diffusion linking and metal cutting

can occur in the same process run.

They use the same optics box as AFIT, except that they replaced the illumination lamp with

a fiber optics line and took out the beam size adjuster. The lamp was replaced because they found

that the aluminum head on the optics box was very sensitive to the heat that the lamp produced.

To change the beam size, they move the platform in the z-axis to place the beam out of focus.

They adjust the size on the upper part of the conic section of the focused beam until the diameter

is correct. After fixing the beam size, they focus the camera and then use a z-axis translation stage

to adjust variations in the height of the chip. They have also added on optics platform on top of

the z-axis stage. The platform allows for adjustments in pitch, yaw, and rotation in order to get

the chip perfectly flat and squared on the translation tabie.

The researchers at Lincoln Labs have created a device to calculate the size of the beam

diameter. They use a diode with a slab of metal partially covering it and some filters to decrease

the intensity of the beam. They step the beam across the diode and measure the current that is

created. As the beam moves onto the metal slab, the current decreases to zero. The resul:ts are fit

to a Gaussian curve and the diameter is determined from the curve.

5.3.3.2 Problems. There have been some problems discovered in the process of per-

fecting diffusion linking and metal cutting. The most irritating problem is that the optimum

.neters for the process vary depending on the fabrication run. They have found that even

different fabrication runs by the same vender produce different process parameters. In the words

of Matt Rhodes, the design engineer, "this is not a cookbook procese"(15). To solve this problem,
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!hey always make a set of test chips on the same fabrication run as the real chip that they are

producing. They have found that fabrication vendors that use lightly doped drains and a nitrite

based passivation layer that absorbs the laser light create chips that are difficult to diffusion link.

Whcn the passivation layer absorbs the light, it melts at a high temperature and pulls away from

the laser beam. The molten layer can then come in contact with a metal layer, which melts the

metal and can cause an open circuit. Another problem that they have found with diffusion linking

is that tne reversed diode leakage at the diffusion link increases by an order of magnitude. This

problem wouldn't, effect our LPROM design, but it should be kept in mind for future projects.

Since the diffusion linking alters the substratc, they recommend as a rule of thumb to keep a 5 - 7

micron distance from the linking area to any other device on the chip.

.5.3.3.3 Tiny Chip Tests. The metal cutting tiny chip used a spot size of three microns.

The metall layer was cut using an 84 microsecond pulse and .6 to 2.0 watts of power. The power

was varied to see how sensitive the process was to power variations. The metal2 layers that had

glass cuts were also cut with an 84 microsecond pulse, but the metal2 lines with a passivation layer

were cut using a one millisecond pulse. The longer pulse was needed because the metal2 lines were

wider. The probing unit was not available, buit visual inspection verified that the cuts were made

successfully.

The diffusion link chip used a spot size of three microns and an 84 microsecond pulse. The

power was varied between 2.2 and 3.2 watts. Some of the links were probed. The pasivation cut

versions did not seem to work, but the links with passivation worked will. The resistance varied

between 108 to 280 ohms. The probe pads on the chip were too small to get a good reading, so the

passivation cut versions may have linked, but just not been probed well.

5.3.3.4 Conclusions. The trip helped to understand that the diffusion link process is a

reliable method, once the correct parameters are found, of linking signals together on a chip. There

are some advantages, in this specific application, to the metal cutting process over the diffusion

link process. The resistance of the diffusion link is greater than the resistance of a metal line.

This is somewhat important for our application, but not critical because the link is in series with a

transistor which has a larger resistance. The capacitance of the diffusion link is greater than a metal

line. This is because the diffusion link acts as a reversed bias diode between the diffusion and the

substrate. One possible solution to the capacitance problem is to enclose the link in a separate p-tub

with a negative voltage, for example -3 volts. The negative voltage will widen the depletion region

and decrease the capacitance, but also increases the area by 10%. The final advantage of metal
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cutting is that it will allow testing of the LPROM transistors before the LPROM is programmed.

This test will be important to verify the quality of the memory cells.

5 4 'omnponerts of the LPROM

The advantages of the metal cutting technique outweigh the disadvantages, so it was decided

to design a new LPROM using the metal cutting technique. The main restriction on the new

LPROM was that it must work with the existing XROM. Because of the XROM restriction, the

new design started with the XROM design and modified it to be suitable for the metal cutting

technique. From discussions with Matt Rhodes, it was determined that the length of the metal

line to be cut should be a minimum of six microns, and that parallel metal lines should be at least

three micron from the cut.

The resulting LPROM cell stores four bits in a 35A by 26A area, which gives a density of

227.5-1 (see Figure 5 !) The new LPROM cell is about one-fourth the density of the XROM, but

it is about twice as dense as the diffusion link LPROM. The new LPROM uses the same supporting

cells as the XROM, but only uses half of the bit lines. The remainder of this section will discuss

,he componcnts of the complete LPROM (see Figure 5.2).

AO Bitline AObar

Wordline

Ct C t

--- i- Wordl ne

Figure 5. 1. LPROM Cell
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Figure 5.2. LPROM Block Diagram

5.. I A 0 Drivers. The bottom of the LPROM is composed of two almost identical cells that

alternate across the bottom. The purpose of the cells is to buffer the least significant address line,

Ao. and its inverse, A0 . Botw of these signals are sent up tne etire length of the ROM matrix.

The signals alternate horizontally across the ROM matrix. The LPROM version of the driver cells

has been modified sligntly from the XROM version to compensrte for the uccreased density. The

only modification was to cut in half the number of connections to the A0 and A 0 lines in the ROM

matrix.

.5 4.2 Sense Amplfiers. The top of the LPROM is filled with sense amplifiers that Lie in

the hitlines from the ROM matrix. The lowe. ha'f of the sense amplifier contains the precharge

logic and a four-to-one multiplexer that receives four of the bitlines from the ROM matrix ind

,'hooses one of then, to be sent to the upper half The four control signals for the multiplexer are

;,nerated by a two-to-four demultiplexer that recrives its input from the second and third address

lines. .41 and ,42 Since the LPROM has half the horizontal density, the .42 line is tied low. The

,;av modification made to the lower half was to help route the bitlines to the correct multiplexer

in pult.

The upper half of the sense amplier cell contains the sense amplifier and the logic to invert

th. bitline data, a technique used to ,ec'ease capacitance on the hitline of the XROM. For the

[.P[()M. the word iign Rignal is ti,'d low so that the hitline is not inverted The word sign signal
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should be watched carefully. If the XROM compiler ties the word sign high then the LPROM data

reprt-entation associated with the corresponding bitline must be iaverted. One approach would

simply be to tel' the XROM compiler NOT to change the word sign. The upper half of the sense

amplifier cell was not modified.

5.4.3 PLA Address Selectors. The remaining upper address lines, A3 to A., are sent through

an array of PLA address selectors to select and drive the ROM matrix wordlines. In th- case of the

LPRO.I. the A 2 line is not used in the two-to-four demultiplexer, so the upper address lines range

from A, to A.. The ,ddress PLAs are located on both sides of the ROM matrix. The PLAs on the

left side of the ROM matrix select the upper wordlines and shunt the lower wordlines. The PLAs

on the right side of the ROM matrix select the lower wordlines and shunt the upper wordlines.

Both sides use the same cell array, but one side is mirroreu and vertically shifted from the other

side. The shunts are used to decrease the resistance of the wordlines by shunting parallel metal2

and polysilicon lines on both sides of the ROM matrix. The LPROM PLA cells were stretched

v-rtically from the XROM versions to accommodate the decreased vertical density. The horizontal

dimension of the cell did not change.

.5.4 4 ROM Matriz. The ROM matrix is a two-dimensional array of LPROM cells. Each

LPROM cell contains four transistors and five signals. The three signals that run vertically are Ao,

bitline, and A 0 . The bitline signal is in the center. The remaining two signals are the upper and

lower wordline signals that run horizontally. The transistors are located in the four corners of the

cell. All of them are connected to the bitline on one side and either the A 0 or the A0 line on the

other side. The upper transistors are gated by the upper wordline, and the lower transistors are

gated by the lower wordline.

5.4.5 Functional Description. The LPROM works in two phases. The first phase precharges

the bittines high while the address lines are settling. The bitlines are precharged with a precharge

signal that gates Vdd through an N-pass transistor to the bitline. The N-pass transistor is used

to keep the precharge voltage at about 3.6 volts. The second phase occurs when the precharge

signal goes low and the wordlines connect the bitline to the A 0 or the A 0 line through the ROM

transistors. If the A 0 addretz is high then the A0 column qignal is driven low. If the connection to

the A0 line has not been cut and the A 0 line is low, then the charge on the bitline will drop. The

dropping charge is detected by the sense amplifier and a high signal is output. If the connection

to the A0 is cut then the bitline will remain high and the sense amplifier will output a low signal.
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Therefore, the presence of a transistor connection to the bitline produces a high output, and a laser

cut of the connection will produce a low output.

5.5 LFROM Test Chip

A test chip was produced of the LPROM on a 40-pin tiny chip. Due to the size and pin

limitation of the tiny chip, the LPROM was limited to 256 words of 16 bits each. The chip requires

eight address lines and a precharge line. It outputs sixteen data lines. The lines are not multiplexed

and do not need to be enabled as in the floating point adder test chip. See Appendix C for the

pin out of the LPROM test chip. in addition to the normal MOSIS fabrication, a ground line was

dropped to the chip cavity to more evenly distribute the electric potential of the substrate. The

ground line is used because the ROM matrix does not contain any substrate contacts.

The PLAs of the LPROM were arranged so that the wordlines start with 00000Oxx at the top

and work consecutively down to l11111xx. If the five most significant address bits are observed,

then the even numbers are on the left side and the odd numbers are on the right side. The A0 bit

is used to discharge the bitline, and the A, bit is used to select the correct bitline.

The A0 column line and the A0 column line alternate across the ROM matrix starting with

the A0 column line on the leftmost side of the ROM matrix. Because the signals alternate, the

address selection of the two least significant bits going frcm left to right across the ROM matrix

are convoluted such that the addressing is 1, 0, 2, 3.

A computer program was written to convert binary data into X,Y coordinate laser cut loca-

tions for the laser workstation at Lincoln Labs, The program takes the address convolution into

account and also calculates the coordinates so that the laser takes the most efficient route. Dur-

ing the laser programming of the LPROM, the laser will work its way around the LPROM in a

sr -like motion instead of a typewriter motion, which is inefficient.

5.5.1 Preprogram Testing of the LPROM. Two tests were performed on the LPROM chips

before they were sent to Lincoln Labs to be programmed. The first test checked the current through

the chip with all of its inputs low. The current ranged between 11.1 and 12.4 milliamps, which

was acceptable. The second test ran through every address and verified that the bitline was being

discharged tbrough the transistor. The second test used a word generator to produce the precharge

signal and the five most significant bits. The remaining three least significant bits were wired to

three manual switches. A logic analyzer was used to read each output bit and verify that the
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voltage was high when the precharge line was low. All four of the LPROM test chips passed this

test for every address at every output.

.5.5.2 Postprogram Testing of the LPROM. The LPROM chips were programmed such that

the upper eight bits of data were identical to the lower eight bits of data. With eight bits of data

and eight address lines, every possible ccmbination of eight bit numbers could be programmed on

each chip. Two of the chips were programmed so that the output data was sequential from 00

hex to FF hex. The other two chips alternated low and high values to make the laser cuts more

distributed. The output data for these chips was as follows: 00 FF 01 FE 02 FD etc. Each chip

contains 4096 bits of data, and each chip had 2048 laser cuts. Each bitline on the chip contained

the same number of cut transistors, but not in the same pattern of cuts.

Testing for the LPROM chip was accomplished using the DAS 9200 logic analyzer. The

address pins were wired to a forcing probe, the data pins were wired to two sensing probes, and

the precharge pin was wired to the return-to-zero (RZ) channel of a forcing probe. Two test were

perform on the chips. The first test verified the accuracy of the laser programming. All of the

chips were programmed accurately and the chip logic worked perfectly. The yield from the laser

programming was 100%.

The second test analyzed the AC parametrics of the chips. The precharge signal was tested

first by decreasing its pulse width and its pulse delay. The pulse width and delay were decreased

down to 5 nsec, which is the mininmum allowed for a RZ channel, and the chips still functioned

properly. Since the width and delay could not be decreased any shorter, the actual setup time for

the LPROM chips could not be determined. The second parametric tests measured the off-chip

read access time. The read access time was taken to be the time from the precharge signal going

low to valid data on the output pins. The tests used a precharge delay of 5 nsec and various pulse

widths. The results of the test are shown in Table 5.1.

The tests concluded that the precharge width has little eff,'; ..e read access time. The

shortest off-chip read access time was 23 nsec. The on-chip read time can be determined by

subtracting the propagation delay associated with the pads. MOSIS tiny chip pads were used

which have a documented propagation delay of between 8 to 11 nsec. The resulting propagation

delhy for the LPROM is between 12 to 15 nsec.
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Chip Precharge Width Read Access Time

A 5 nsec 25 nsec
B 5 nsec 27 nsec
C 5 nsec 25 nsec
D 5 nsec 26 nsec
A 10 nsec No Data
B 10 nsec 27 nsec
C 10 nsec 25 nsec
D 10 nsec 23 nsec
A 60 nsec No Data
B 60 nsec 28 nsec
C 60 nsec 25 nsec
D 60 nsec 31 nsec

Table 5.1. LPROM Read Access Times
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[. Parallel .Applications

6.1 Introduction

The architecture of the LPASP has been upgraded a number of times to include such things

as assembler language support, for instance. The purpose of this A"apter is to investigate the

additional hardware and software requirements to support parallel processing of multiple LPASPs.

Parallel processing can be accomplished using a variety of techniques. The best technique,

though, usually depends on the expected application for the processor system and the facilities

available on the processor. The chapter begins with a presentation of various options that are

available to a parallel processing architecture. The options section is broken into four subtopics

which includes processor communication, memory architectures, parallel verses pipelined architec-

tures, and application mapping. The second section recommends which approach the author feels

is best to support the Kalman filter algorithm for the LPASP. It also addresses the hardware and

software requirements for the suggested architecture.

6.2 Options

There are numerous techniques available to support parallel processing. Each technique has

its own advantages and disadvantages depending on the application. The intent of this section

is to give the reader a feel for what questions need to be answered before an architecture can be

developed. This section wi!l explore four of the major issues associated with parallel processing.

The first issue is how the parallel processors will communicate with each other. The second issue is

how the memory will be managed and allocated. The third issue is whether to place the multiple

processors in a parallel architecture or a pipelined architecture. The final issue discussed is the

mapping of the algorithm to the parallel architecture.

6.2. 1 Processor Communication. Processors communicate with each other through what is

called a network. A network can pass information from one processor to another in a variety of

ways. This section will discuss the four design decisions that must be made to select an appropriate

network architecture.

In the world of parallel processing, people are rontinuously debating which network archi-

tecture is the best. The answer to this burning question is, "It depends". The real issue is what

questions need to be answered in order to determine the best network for your application. The four

design areas that need to be addresbed are the operating mode, the control strategy, the switching

methodology, and the network topology(5).
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The operating mode determines whether the network will be synchronous or asyr.chronous.

If the network communication paths are established in a synchronous (lock-step) fashion then the

network is said to be synchronous. If the individual paths are dynamically established then the

network is said to be asynchronous. Synchronous networks have a simpler design and are easier

to control. They can be effectively utilized when processor communication occurs all at once with

a nonconflicting, one-to-one source to destination correspondence. This type of co,,munication

is found in a Single Instruction / Multiple Datapath (SIMD) architecture. The disadvantage of a

synchronous network is that it is very restrictive and doesn't have the flexibility of an asynchronous

network. The speed of the synchronous network is limited by the slowest element.

The control strategy is the method of controlling the switching elements and the intercon-

necting links that make up the network. The two general control strategies are centralized control

and distributed control. In a centralized control network, a central controller commands all of

the switching elements and the interconnecting links. The central controller performs all of the

information collecting and voting required to decide how the network should be configured for each

communication cycle. The centralized control strategy allows the network to see the big picture

and choose the optimal configuration, but it requires a lot of sensor and control wiring, and the

central controller's configuration algorithm can be rather complex for large networks.

The distributed control strategy allows the individual elem2nts of the network to determine

their own configuration. Each element of the network examines the destination address of its input

data and uses the information to determine its configuration. The advantage of the distributed

strategy is that elaborate wiring and complicated control algorithms can be avoided. The disad-

vantage is that the overall network configurations is not necessarily optimal.

The third decision that must be made is the switching methodology. The switching method-

ology is the way that a piece of data traverses its way through the network. There are two methods

of switching through the network. The older and less commonly used method is circuit switching.

Circuit switching provides a dedicated path through the network connecting the source and the

destination prior to the transmission of data. The transmission path is held until the data trans-

mission is completed. This switching method is similar to the old telephone switching network.

The advantage of circuit switching is that it is very simple. The disadvantage is that the dedicated

paths can cause network congestion.

The more commonly used switching methodology is packet switching. With packet switching,

the data is broken in packets that contain the routing information. The packet(s) are then sent

individually through the network. The packet switching methodology is similar to the postal
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system. Since the packets do not require dedicated lines, this methodology allows network resources

to be shared, which reduces congestion. The disadvantage of packet switching is that the network

configuration and control can become complex and the data packets can be misrouted and lost.

The last major decision is the network topology. The network topology is the flexibility of

the links within a network. Two types of network topologies are static networks and dynamic

networks. The links within a static network are passive, dedicated busses. However, the links

within a dynamic network are reconfigurable via control structures. Dynamic networks are more

flexible than static networks, but dynamic networks require more control logic than static networks.

The network topology and the operating mode sound similar, but they are differ .t. The

operating mode is how the network will be used, while the network topology is the flexibility of

the network. As an example, a network with static topology can operate in an asynchronous

mode. In this example, static links would be established and released at random to accommodate

asynchronous communication.

6.2.2 Memory Architectures. The memory architecture of a processor system has a big

impact on how the interconnection network is used. There are two types of architectures that are

commonly used in parallel systems(5). The first type is a processor-to-memory architecture. The

second type is a processor element (PE)-to-PE architecture. The processor-to-memory architecture

uses a central memory system. The PE-to-PE architecture uses a distributed memory system.

6.2.2.1 Processor-to- Memory. In a processor-to-memory architecture, the parallel pro-

cessors are connected to the memory through the interconnection network (see Figure 6.1). A

bi-directional network is used to perform all of the communications between the processors and the

memory units. Interprocessor communication is performed by storing and retrieving the communi-

cation information in memory units that are common to the two processors that are communicating.

The centrally located memory system of the processor-to-memory architecture makes inter-

processor communication very easy, but it also increases the memory access time because or the

extra time required by the interconnection network. The memory accesses are accomplished by

sending out a memory request into the network. When the appropriate memory unit receives the

request, it returns a block of data to the requesting processor. Instruction fetches are performed

the same way as any other memory request, which can heavily load the network. Instruction fetches

should not be frequently required for the LPASP, though, because most of its instructions will be

store in the XROM or the LPROM.
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Figure 6.1. Processor-to- Memory Architecture
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6.2.2.2 PE-to-PE. The PE-to-PE architecture uses processor elements that consist of

a processor and a local memory unit paired together. The interconnection network is uni-directional

with a bank of input ports and a bank of output ports. Each processor element has an input port

and an output port that is connected to the respective output and input ports of the network

(see Figure 6.2). Unlike the processor-to-memory architecture, this architecture requires a one-to-

one correspondence between the number of processors and the number of memory units, and the

network only provides interprocessor communication. Interprocessor communication is initiated by

a processor element placing data onto an input port of the network. With the proper configuration

f the network, the data is driven out of the network output port and into the input port of the

destination processor element.

PE Interconnection

Network

Figure 6.2. PE-to-PE Architecture

The memory unit within a processor element is connected directly to its associated processor,

,o memory accesses do not require the interconnection network. Since the network is not needed

for memory accesses, memory access times can be kept to a minimum and the load on the network
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is reduced. The distributed memory structure causes interprocessor communication to be more

complex and slower than normal memory accesses. Since the memory is not centralized, if a pro-

cessor needs information that is only in another processor element's memory then an interprocessor

transfer must occur to obtain the information.

6.2.3 Parallel vs. Pipeline. Pipelining, also known as temporal parallelism, is another way

to increase the performance of a processing system. This section will first compare and contrast

pipelined systems verses parallel systems, and then explain how the LPASP could be used in a

pipelined architecture.

6.2.3.1 Compare and Contrast. Both pipelined and parallel computers attempt to in-

crease performance by increasing the number of simultaneous operations being performed. Pipelined

computers accomplish the increase in performance by partitioning a function into subfunctions that

can be executed concurrently. Parallel computers increase performance by replicating hardware to

perform independent execution of subprograms on separate hardware. Pipelined computers mea-

sure their performrnce as one result every - seconds, while parallel machines meas,re performance

in terms of N results every T seconds(5). Performance for the pipelined machines is best seen wnen

processing one dimensional vectors of arbitrary length, while array problems with lengths that are

multiples of the number of processors are best executed on a parallel machine. Both systems require

high speed memory systems, but pipelined systems use a single, multi-way, interleaved memory and

parallel systems use multiple, independent memory modules. Another distinction between the two

machines is that detailed control is handled largely by the hardware in a pipelined machine, while

it is handled by the user or the operating system in a parallel structure.

6.2.3.2 Pipeln:ng with the LPASP. Pipelining can be accomplished with the LPAS.

by cascading multiple LPASP such that the output of one LPASP is the input to the following

LPASP. Since the LPASP is laser programmable, each LPASP c-n perform a different subfunction

of the overall task. The input and output ports for the LPASP can be the same input and output

ports that are required for a parallel LPASe system, which will be discussed later in section 6.3.2.

The GO and DONE control signals in the LPASP can be wired between LPASPs to control the

processing of information (see Figure 6.3). One approach is to have each LPASP have its own local

memory.

T b start tie process, the host computer would load all of the required information in the first

LPASP's memory and set the GO signal. When the first LPASP has completed its processing, it

would set its DONE signal, which would also get the next LPASP's GO signal. The final processing
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I'igure 6.3. Pipelined Architecture
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of the first LPASP and the initial processing of the next LPASP would be data transfers using IL

output port of the first LPASP and the input port of the next LPASP. When the second LPASP

completes its processing, it would pass control and data to the next LPASP in the pipeline. This

sequence would continue until the last LPASP in the pipeline completed its processing and set its

DONE signal, which would flag the host computer of the final result.

If there is a large amount of data transferrei between successive LPASPs in the pipeline, then

the memory for the LPASP could be placed in a shaed configuration. In this shared configuration,

an LPXSP can read and write data to its own memory and write to the memory of te next LPASP

in the pipeline (see Figure 6.4). The LPASP can address one megaword of memory, so addressing

would not be a problem. Control logic would have to be used to lock the memory while one of

the LPASP was using it to prevent two LPASPs from trying to access memory at the same time.

Another solution is to have the memory transfers be synchronized such that every LPASP in the

pipeline would write data into its next LPASP's memory at the same time. With the memories in

a shared configuration, data busses would not be required between LPASPs.

6.2.4 Application Mapping. Both parallel and pipelined systems must be designed to fit

the application that will be used by the system. If the application is partitionable into sequential

subfunctions that can be executed concurrently, then the application may be used on a pipelined

system. !f the application can be divided into independent subprograms that can be executed

concurr:-itly on separate hardware, then the application can be used on a parallel system.

The first application for the LPASP is the Kalnan filter algorithm. A Kalman filter consists

of propagation equations and update equations(17). There have been numerous papers written on

how to ni.,p the Ktiman filter algorithm to a distributed architecture. There .r two papers that

offer some very good approaches to the problem. The first paper was written for AFWAL by Dr.

Neal A. Carlson of Integrity Systems. Dr. Carlson's paper presents a federated filter architecture

that combines both parallel processing and pipelining(3). The second paper was written for the

Office of Naval Research by Radhakisan S. Baheti and David R. O'rfallaron of the GE Research

and Development Center. The second paper mainly addresses mapping a mat:ix multiplication to

a linear array of processors(1).

6.2-4.1 Federated Filter Architecture. The federated filter architecture combines both

parallel processing and pipelining into one coordinated system. The processing system assumes a

navigation system comprised of a suite of sensors or sensor subsystems with local filtering capa-

bilities, whose outputs are subsequently combined by a larger master filter (see Figure 6.5). Dr.
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Carlson's objectives in designing the federated filter was to "synthesize a two-stage alternative to

the fully optimal. single-filter architecture that: makes effinient use of local filters for measurement

preprocessing prior to master filter processing; incurs little or no loss in performance (estimation

accuracy) relative to the theoretically optimal solution; and is stable and robust across the full

spectrum of operation conditions to be encountered"(3).

L-N R \- L

SYSTEM " MASTER

O SFILTER

DTLOCALAT LOCAD P I ATE ter
SESO 2 F LTER 21 PI ro, -n

[L~~~c~~\_ -L " -" -'ct -- __ --. P4.

Figure 6.5. Federated Kalman Filter

Each local filter estimates its local state by processing a sequence of measurements during

the prefiltering interval. Each local filter state contains all significant elements that are directly ob-

servable via these measurements. Each local filter also implements a sufficiently accurate dynamics

model for time propagation of the local state and its covariance between measurement times. The

results of the local filter are sent to the master filter.
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"The master filter takes the preprocessed results from all of the local filters and generates the

combined (fused) solution. The master filter may or may not feed back its results to the local filters.

For optimal accuracy, the master filter must either a) divide and feed back the fused information

to the local filters, zeroing its own information, or b) retain the fused information, and zero the

local filters' information.

6.2.4.2 Linearly Arrayed Parallel Kalman Filter. The GE Research and Development

Center has also been studying ways of mapping the Kalman filter algorithm onto a parallel process-

ing system, but their approach is somewhat different. The researchers at GE concert-ted ! ::

efforts on reducing the 0(n 3 ) floatin; poi,.' computations required by the Kalman filter algorithm.

They accomplished a reduction in computations by performing the vector-matrix multiplications

and the matrix-matrix multiplications of an n-state Kalman filter on an (n + 1)-cell linear array of

processors.

The linear array of processors is constructed such that data flows from left to right along

an upper communication channel and from right to left along a lower communication channel (see

Figure 6.6). Each processor cell, with the exception of the last cell, requires two input ports and

two output ports and can communicate with its two neighboring cells. The last processor cell only

requires one input port and one output port and can only communicate with the second-to-the-

last cell. If this configuration were used for the LPASP, the input data ports would Have tu be

multiplexed into one input port. The same would be true for the output ports.

Cell Cell Cell Cell

Figure 6.6. Linear Array of Processors

The time update of the covariance matrix for the Kalman filter algorithm is acc3mplished

by updating one column of the covariance matrix on a single computational cell. For an (n x n)

covariance matrix update, n cells are used with an improvement from O(n3 ) to O(n 2 ). The parallel

algorithm for the time update is summarized in the following. Before the time update, the kth cell

contains the kth column of P, the covariance matrix. First, six of the columns of P are shifted to

the left and the result is stored in vector q. Next, three columns of P are shifted to the left and the
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rs:llt is stored in vector r. With the appropriate columns in place. each cell updates its cWlunin of

P !:dependently( 1).

The calculation of the ith scalar measurement update of P is slightly different than the time

update. Before the ith scalar measurement update of P, the kth cell contains the kth column of

P. The elements of H,, which is the ith row of the measurement partial derivative matrix H, are

sent from the left to the array of cells. As H, flows past the kth cell, the cell a~cumulates the kth

scalar element of HiP. As scalar elements of 11,P are computed, they are passed back to the left

and out of the array(1).

6 7 Recommaendatzons

The previous section presented a few of the important options associated with designing a

parallel processing system. This section wii 'iscuss my recommendations for a parallel processing

system. It starts with a suggested approach for parallel processing with the LPASP, followed by

the hardware recuirements and the software requirements for the LPASP.

6.3.1 Suggested 4pproach. With the number of options presented in the previous section

and the variety of ways that the Kalman filter algorithm can be paratielized, the "best" design for a

parallel LPASP system cannot be determined without detailed knowledge of the exact application.

The beauty of the LPASP chip is its inherent flexibility, such that it can be programmed to perform

any number of different algorithms in either a parallel architecture or a pipelined architecture.

The major design issue, with respect to the LPASP, is whether the LPASP contains the

necessary hardware to accommodate all of the various parallel configurations. More specifically,

the LPASP must support the processor-to-memory configuration, which requires a bi-directional

port and appropriate control lines, and it must support the PE-to-PE configuration, which requires

an input port, an output port, an external memory port, and appropriate control lines. If the

LPASP can support both of these communication configurations then it. can be placed in any

parallel or pipeline architecture and can connect to any interconnection network.

There is one other point that should be emphasized. The internal architecture of the LPASP

is optimized for the dot product routine that is used for vector-vector, matrix-vector, and matrix-

matrix multiplication(4). There are a number of algorithms for performing a parallel matrix-matrix

multiplication(7, 2, 10, 13). When a parallel architecture is designed, it should take advantage of

the optimization by storing an entire column of the matrix in each of the LPASPs. By broadcast-

ing the elements of the row of the other matrix, a matrix-matrix multiplication can be reduced
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from an 0(n 3 ) computation to an 0(n 2) computation and still take advantage of the dot product

rutine( 13).

6.9.2 Hardware Requirements. The architecture for the LPASP has been designed, and it

would be best to minimize the modificatiopq made to the architecture to accommodate parallel

processing. Parallel processing requires input ports, output ports, and control lines for interpro-

c,,ssor and external memory communications. Each port requires 32 pins for integer transfers or 64

pins for floating point transfers. It would take 192 pins just Lu satisfy the ports fur floating point

transfers. This number does not include the 40 pins needed for memory addressing and all of the

ether pins r-;-;-A f- , -L- ....... -,roi zignais. Unfortunately, packages with pi counts in

excess of 240 pins are not available from MOSIS.

The LPASP already has two 32-b> independently addressable external memory ports (see

Figure 4 1). The two ports can be coordinated to read or write 64-bit floating point numbers, or

they can work separately to access two different 32-bit integer numbers. Each memory port has a

20-bit address associated with it. One solution to the communication port problem is to use one

of the memory ports as a memory/input port and the other as a memory/output port. The high

order bits of the address could be used to choose between its memory or one of its neighboring

processors. For example, if the three highest order bits were used for communication addressing,

then each processor could accebs 128K of memory using address 000 and communicate with seven

other processors using addresses 001 through 111. If a hypercube interconncctioa ,ietwork was used

then each processor would have seven nearest neighbors, and a parallel system could be constructed

with 27 or 128 processing elements.

6.3.3 So, ,arr Requirements. There is one minor problem with the solution of using the

memory ports as -, .A and output por~s, but this problem can be solved by the software. Tile

memory ports are only 32 bits wide and can not handle 64-bit floating point numbers. The solution

is to use two 32-bit transfers to paw 64-bit floating point numbers between processors. General

purpose registers RI and R2 can be used in addition to the MBR to store the data off of the data

pads during a data transfer (see Figure 3.2). Though the floating point transferm will take two

clock cycles, this should only impact the dot product routine by at most one clock cycle because

the data transfer can occur while the floating point multiplier and the floating point adder are

processing. The additional clock cycle may be needed to transfer the high order bits of the floating

point number from the lower datapath to the upper datapath.
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[he recommended configuration is to use the lower datapath as the input port and the upper

,latapath as the output port. The reason for this selection is that it is natural to send the high

order bits first followed by the low order bits. For a data input, the high order bits from another

processor are sent to the lower datapath input port in the first clock cycle. Then in the second

clock cycle those high order bits ca.- be shifted to the upper datapath while the low order bits from

another prncessor are being sent to the lower datapath input port. Likewise, for a data output. in

the first clock cycle the low order bits can be shifted to the upper datapath while the high order bits

are being sent from the upper datapath output port to another processor. Then in the second clock

cycle the low order bits can be sent from the upper datapath output port to another processor.

With separate ports, data can be sent and received in the same clock cycle.

64 Conclusion

Before a parallel processing system can be designed, some tundamental issues must be re-

solved. The four design decisions associated with tb- processor communication are the opZatirig

mode, the control strategy, the switching methodology, and the network topology. A decision must

be made between using a centralized memory architecture or a decentralized memory architecture

There is also the issue of whether to go with a parallel architecture or a pipelined architecture.

Most of these issues will depend on the application that is being mapped to the system. The first

application of the LPASP is the Kalman filter algorithm. Two parallel versions of the Kalman filter

algorithm have been presented.

rhe LPASP is a very flexible chip that can be used in a variety of parallel architectures

without modifying the architecture of the chip. The LPASP contains two external memory ports

that can be used as an input port and an output port. The two ports allow the LPASP to be

connected to any interconnection network for maximum flexibility. The "best" configuration and

network that should be used for a Kalman filter application depends on the algorithm that is used,

the number of sensors available in the navigation system, and the number of states in the Kalman

filter matrix.
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tI. Concluszons aad Recommendations

7 1 [ntroduction

T he original goal of this thesis was to design the double precision floating point adder, inte-

grate it with the other macrocells into an LPASP chip, and test the chip. The chip was to be the

largest and fastest chip ever designed at AFIT. Due to complications with the original LPROM

and the floating point multipiier, the uitimate goal of creating the LPASP chip could not be accom-

plished at this time. As a result, the direction of this thesis was modified to include the analysis

and design of a new LPROM and the investigation of parallel applications of the LPASP.

The objectives of this thesis effort have be-n accomplished with the achievement ot so..

significant contributions. The remaining sections will review the contributions made by this thesis,

discuss some of the le,.sons learned, and make some recommendations for future work.

7 z Contributons

Five chips were created by this thesis effort. Of tl.e five chips, f3 .: of them worked and one of

them worked for the majority, but not all, of the possible stimulus cases. The following paragraphs

will present the contributions made by each of the chips.

The research effort toward the floating point (FP) adder lead to the creation of the optimized

carry multiplexed (OCM) adder architecture, the most efficient VLSI adder design to date. The

• 7-bit OCM adder test chip verified the architecture, design, and implementation of the 58-bit

adder used as the heart of the FP adder. The timing analysis for the design of the OCM adder

cells was used as the basis for the transistor sizing in the remaining substructures of the FP adder.

The OCM test chip also contributed to the realization of the limitations of using on-chip probes

for AC parametric testing.

The FP adder chip was the most complex and demanding of all of the chips that were created.

Though the chip does not work for all of its possible inputs, it does work for the vast majority of

the input cases and can be considered a major achievement. The contributions of the FP adder

are not only in its completion, but also in the unique implementations of some of its substructures.

The first unique implementation was the creation of a master-slave flip-flop that combined N and

P pass transistors in such a way as to decrease the number of required control lines and cut in half

its original size. The second unique implementation was the creation of an arithmetic linear shifter

using N pass transistors to decrease its original size by one-third. Without the size reduction in

the two linear shifters, the 2300A size restriction on the FP adder could not have been achieved. A
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third unique implementation was the creation of the priority encoder, which used pseudo-NMOS

NOR gates and muxes to create a relatively small structure.

The two laser technology test chips gave proof of concept to the application of diffusion linking

and metal cutting with a laser. They also provided knowledge and understanding of the process

parameters and the limitations of diffusion linking and laser scribing. Thc twc, Lhip gave insight

into the design rules that were used to create the new LPROM chip.

The LPROM chip was the most successful chip that was created. The density of the LPROM

chip is twice that of the original LPROM. The chips substructures were logically correct and the

laser programming yield was 100% for all four of the test chips. The read access time is very low

and demonstrates the feasibility of using a metal cutting LPROM in the LPASP.

7.3 Lessons Learned

There are four signif-_nt lessons that were learned from the work that was performed in

accomplishing the goals of this thesis. The first lesson was the importance of timing analysis.

When the design for the cells of the adder was first started, everything was analyzed, but the

layout effort got behind schedule. As a result, the timing analysis from the adder cells was used

to create the majority of the cells that were designed for the FP adder. A better approach would

be to alternate between analysis and layout throughout the entire project. If this approach would

have been followed, the FP adder may have had a smaller propagation delay time because the

multiplexer control drivers would have been more appropriately sized.

The second lesson was the use of latching data on-chip when timing considerations are sig-

nificant but pins are not plentiful. Probe pads are great for gaining visibility of the logic within

the chips, but they cannot be used very effectively to provide timing information because of the

capacitance of the probes. A better method is to use latches that are controlled by an external

clock. After the data is latched, its logic can either be probed or serially shifted to an output pin.

A third lesson that was learned is not to be so concerned about always reducing size. There

were a few occasions where something was designed extremely small and then had to be redesigned

larger to fit into the data path pitch. The best approach is to determine an appropriate data path

size and then keep that size throughout all of the substructures. By keeping a consistent data path

size, the power and ground lines of the substructures will route easily and a standard cell library

can be produced.
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The fourth lesson that was learned was to maxim.ze the use of labels. Labels are the best way

to document a design. They help to maintain continuity between substructures and help to detect

errors in the debugging process. A major reason for the success of the five chips is the extensive use

of labels in the design. Labels can get in the way during ESIM testing, but a quick and easy way

to get around the ESIM problem was found. The solution requires three steps. The first step is to

create a macro that selects a cell, edits the cell, and erases labels. The second step is to expand

the chip on MAGIC with only the "labels" layer exposed. The final step is to repeatedly point at

clusters of labels and press the macro key. Eventually, every cell's label layer will be deieted and

the screen will be blank. If key labels are placed on the layout then the chip can be CIFed with

only the key labels.

7 4 Future Work

There are four areas of work that should be accomplished before the LPASP chip is ready
for fabrication. The first and most important task is to layout the floating point multiplier and
create a test chip of it. The second task is to analyze the multiplexer driver logic of the FP adder

and properly size the drivers. The third task is to create test chips of the integer data path of the

LPASP to verify the logic that was designed by Capt Comtois. The fourth task is to start with
the parallel applications foundation that was presented in this thesis and create a specific parallel

application for the LPASP. This last task is optional, depending on the purpose of the first version

of the LPASP.
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Appendix A. Pin Out for OMC Adder Test Chip

Pin # Description Pin # Desu ip.io.

I Ao, A2 2 , A 29 , Aso 21 A8 , A15 , A 36 , A 43

2 At, A23 , A30, As1  22 A9 , A1 6, A37 , A44

3 A2 , A24 , A3 1 , ,A52 23 Ala, A17 , As, A45

4 A 3 , A25, A32 , A5 3  24 All, A 18 , A 39 , A 46

5 GND 25 GND

6 A 4 , A 26 , A33, A 5 4  26 A 1 2 , A19 , A 40 , A 47

7 Load bits 43 56 27 A13, A 20 , A4 1, A 48

8 As, A 2 7 . A34 , A55  28 A 14 , A2 1, A 42 , A 49

9 A6 , A28, A35 , As 6  29 Load bits 15 28

10 Bo, B 22 , B 29 , Bso 30 NC

11 BI, B23 , B30 , Bs1  31 Load bits 29 42

12 B2, B24 , B3 1, B52  32 GO

13 Load bits 0 14 33 B8 , B1 s, B38, B43

14 B3 , B2 5 , B 32 , B5 3  34 Bg, BI6 , B3 7 , B 44

15 Vdd 35 Vdd

16 B 4 , B 2 6 , B 33 , B 5 4  36 B1 o, B1 7, B38, B4 s

17 B 5 , B2 7 , B 34 , B 55  37 B,1 , Bi, B 39 , B4 6

I i 6, B28, B3 5 , LAd 38 t 1 2, t119 , B 40 , B 4 7

19 A 7  39 B 13 , B2 o, B 41 , B48

20 B 7  40 B 14 , B 2 1 , B4 2 , B 4 9
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Appendix B. Pin Out for Floating Point Adder Test Chip

Pin Description Pin # Description Pin # Description Pin # Description

1 Vdd 22 G N D 43 Vdd 64 G ND

12 [/Oo 23 l/O16 44 1/042 6.5 1/0,7

3 [/O 24 [/017 45 1/043 66 I/0 s,

4 1/0, 25 '/0,8 46 1/044 67 1/Os,

5 1/03 26 1/01) 47 [/045 68 [/0r,

6 1/04 27 1/020 48 Load A 69 1/01

7 1/05 28 1/021 49 PQ2 70 I,1O,

8 i1/0 29 Vdd 50 GND 71 Vdd

9 1/07 30 1/022 51 Enable 72 /0Q

10 GND(SC) 31 1/0.-3 52 1/046 73 NC

/811 /0 32 1/032 53 1/047 74 NC

12 1/09 33 1/033 54 /0418 75 NC

13 1/010 34 1/034 55 1/049 76 1/03i

14 1/011 35 1/'%a3 56 7/Oso 77 1/03o

15 Vdd 36 GND 57 Vdd 78 GND

it6 PQI 37 1/036 58 '/051 79 1/029

17 Load B 38 1/037 59 1/052 80 1/028

18 1/012 39 1/038 60 1/053 81 1/02-

19 1/013 40 1/039 61 1/054 82 1/026

20 1/0,... 41 1/040 62 I/0s, 83 1/025

21 I/Or, 42 1/041 63 1/056 84 1/024
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Appendix C. Pin Out for LPROM Test Chip

Pin# Description Pin # Description

I Datao 21 NC

2 Data' 22 NC

3 Data2  23 NC

4 Data 3  24 Addro

5 GND 25 GND

6 Data 4  26 NC

7 Data5  27 NC

8 Dcta3 28 Addr 2

9 Data7 29 Addr 3

10 Datas 30 Addr 4

11 Data9  31 Addr5

12 Precharge 32 AddrS

13 Addr, 33 Addr 7

14 Datalo 34 NC

15 Vdd 35 Vdd

16 Data,, 36 NC

17 Data 12  37 NC

18 Data13  38 NC

19 Data 14  39 NC

20 Data1 5  40 NC
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19 Abstract

The laser programmable floating point application specific processor (LPASP) is a new approach at rapid

development of custom VLSI chips. The LPASP is a generic application specific processor that can be

programmed to perform a specific function. The effort of this thesis is to develop and test the double

precision floating point adder and the laser programmable read-only memory (LPROM) that are macrocells

within the LPASP. In addition, the thesis analyzes the applicability of an LPASP parallel processing system.

The double precision floating point adder is an adder/subtractor macrocell designed to comply with

the IEEE double precision floating point standard. An 84-pin chip of the adder was fabricated using 2 micron

feature sizes. The fastest processing time was measured at 120 nanoseconds over 23 worst case test vectors.

The adder uses the optimized carry multiplexed (OCM) adder that was developed at AFIT.

The OCM adder is a new adder architecture that uses four parallel carry paths to attain a perfor-

mance time on the order of 0(n/') with a gate count on the order of 0(n). The redundant logic associated

with the parallel propagation banks is eliminated in the OCM adder so that the largest bit-slice of the adder

contains only eight 2-to-1 multiplexer gates. A 57-bit adder was fabricated using 2 micron feature sizes. The

processing time for the adder is 31 nsec. -

The laser programmable read-only memory (LPROM) is programmed by using an argon-ion laser

to cut transistor links. The LPROM was designed to provide a post-fabrication programmable capability

to a MOSIS compatible ROM. A 256 by 10 bit LPROM was fabricated using 2 micron feature sizes. The

chips were laser programmed with a laser programming yield of 100% and an off-chip read access time of 23

nanoseconds.
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